Основные изменения тНавигатор 25.1 (гидродинамика и сети)

Интегрированные разработки для моделирования Май 2025

Новые модули тНавигатор:

- Добавлен новый модуль ИИ Ассистент. Данный модуль представляет собой помощник на основе искусственного интеллекта, который принимает естественно-языковые запросы и выдает ответы в текстовом виде и в виде исполняемого workflow.
- Добавлен новый модуль Анализ Пласта, предназначенный для проведения динамического анализа данных. В данной версии добавлена возможность выполнять анализ кривых падения добычи (DCA – Decline Curve Analysis).

- Расчётная часть тНавигатор:
- Для термических моделей поддержана опция моделирования молекулярной диффузии.

Добавлена опция, которая позволяет изменить правило укрупнения блоков в границах разломов с использованием ключевого слова COARSEN.

- В Геомеханическом модуле:
- Во все расчеты Геомеханики 1D добавлен фил по Кривым ГИС.
- **Добавлена модель смыкания трещины Barton-Bandis**.
- Добавлена возможность задавать коэффициент теплового расширения породы, вызванного тепловыми эффектами, как по геомеханическим регионам, так и в каждом блоке сетки.

	Интервал Фильтр по кривым ГИС	;						
	Учитывать пропуще	нные	знач	ения фильтро	ов Кривых ГИС			1
	іліетод пересечения			Исп.	Кривые ГИС/И		Правило	Значение фильт
	• Или	×	1	\checkmark	∻ GR -	>	-	72
	ОИ			Пишите				
ыр								1

В Симуляторе трещин ГРП:

 Поддержана возможность моделирования термических эффектов при проведении ГРП.

		\sim
нтроль за	ка	Чист
бит	-	818.7
бит	-	0

- В Дизайнере Сетей:
- Добавлен новый объект сети Райзер, используемый для подключения морских месторождений к надводным платформам.

Для интегрированных моделей добавлена возможность учитывать пользовательский начальный состав флюида, заданный на скважинах, для рекомбинации расчетного состава.

Автоматизированная подводная платформа Equinor (The Statoil Subsea Factory)

- В Дизайнере Сетей:
- Добавлена возможность распределять добычу между разными скважинами под одним устройством ограничения с помощью задания весового коэффициента скважин.

Добавлены API-функции, которые позволяют получить координаты элементов наземной сети на вкладках Схема и Карта.

- В Дизайнере Скважин:
- Добавлена новая вкладка Дизайн ЭЦН для подбора оптимального ЭЦН и количества необходимых ступеней для обеспечения целевого дебита.

На вкладке Профиль скважины добавлен новый раздел Системные графики для визуализации результатов расчета в целом по скважине.

- В Дизайнере Скважин:
- Добавлена вкладка для визуализации карты режимов течения.

- В РVТ Дизайнере:
- Поддержан расчет энтальпии/энтропии идеального газа по корреляции Passut and Danner для композиционных моделей.

В вариантах чёрной нефти добавлена корреляция Velarde Blasingame McCain для расчёта свойств чёрной нефти и генерации РVТ таблиц.

$$R_s = \frac{R_{sr}}{R_{sb}}, \quad p_r = \frac{p}{p_b}$$
$$R_{sr} = a_1 p_r^{a_2} + (1 - a_1) \times p_r^{a_3}$$

В РVТ Дизайнере:

Для замеров Grading test в композиционных моделях поддержан учет энтальпии. Значения коэффициентов изобарной удельной теплоемкости компонент корреляции Passut and Danner возможно использовать в качестве параметров адаптации для воспроизведения замеров Grading test.

- В Дизайнере ОФП:
- Поддержана возможность моделирования изменения смачиваемости породы, обеспечиваемого накоплением ПАВ.

Поддержано создание групп регионов, в которые включаются варианты ОФП и капиллярного давления, относящиеся к одному варианту модели (например, для регионов дренажа и пропитки при использовании гистерезиса).

12

- В МатБалансе:
- Для композиционных моделей материального баланса поддержаны графические методы анализа материального баланса и анализ механизмов добычи.
- Поддержано изменение таблиц потока на временных шагах.
- Добавлена возможность отключать поправки на гидростатику при вычислении притока в скважину.

13

- В Сервере Управления:
- Добавлена возможность запускать Сервер
 Управления вместе с кластерным диспетчером
 (возможность добавлена в дистрибутив
 диспетчера).

Добавлена возможность открывать проект адаптации с помощью функции .open_project() класса Connection.

ИИ Ассистент

Проект	Дизайнеры	<u>М</u> оделирование	<u>Н</u> астройки	<u>Л</u> ицензии	<u>П</u> омощь	
Паралл	ельность: 8	ядер 💌	Использов	ать GPU	<u>98</u>	
		HAB	ИГА	ATC	P	
	🖗 ДИЗ Геолог	айнер Геол ическое моделирова	погии ание			ДИЗАЙН Создание, ра интегрирова
	ДИЗ Горнор	айнер ТПИ удное моделирован	ие			РVТ Ди Работа с мод
	Сей Работа	СМИКа с сейсмическими д	анными			Дизайн Фильтрацион
	Сопров	СТИРИНГ зождение бурения				МатБа. Анализ матер
	ДИЗ Модел	айнер Скв ь скважины	ажин		E _a	Облачі Расчёты на л
1	₩ ДИЗ Модел	айнер Сет ирование поверхно	ЕЙ стных сетей			Очере Управление
	М Анализ	лиз Пласта з динамики пласта	a		~	Раздел Управление

ИИ Ассистент в разных модулях

- - Вызов ИИ Ассистента происходит путём нажатия на кнопку 😵 или соответствующий модуль в
 - главном окне тНавигатор
- На данный момент ИИ Ассистент доступен в следующих модулях:
- Дизайнер Геологии
- Сейсмика
- Геостиринг
- Дизайнер ТПИ
- Дизайнер Моделей
- МатБаланс
- Симулятор ГРП
- Эксперт

• ИИ Ассистент – это новый модуль, основанный на использовании искусственного интеллекта.

	https://irmodel.i tnavigator@irmodel.i
йнер Моделей	Расчёт
расчёт и анализ динамических	Модели чёрной нефти, композиционные,
интегрированных проектов	термические и интегрированные
ДИЗАЙНЕР	Результаты Расчёта
оделью флюида	Просмотр результатов расчёта моделей
йнер ОФП юнные исследования	Адаптация Автоматизированная адаптация, оптимизация и анализ неопределённостей
аланс	Коделирование трещин гидроразрыва
ериального баланса	пласта
ные Вычисления	КИ Ассистент
покальном и облачном кластере	Умный помощник с глубоким обучением
едь Задач	Лицензии
е очередью задач	Состояние и установка
еление Ресурсов	Эксперт Интерактивный справочник и новости

🗐 MD) [Адаптация и Оптимизация/ДГ/MD/Дизайнер Сетей/
Проек	ст Вид Настройки Файлы Менеджер проекто
В	💃 🌆 🐹 🥕 ¥ 🙂 💷 🗙 🗆
🍯 Эк	сперт тНавигатор
14	Документация
	😌 Дизайнер Геологии и Моделей
	漜 Дизайнер ТПИ
∎≯	🛜 Сейсмика
Q	늘 Геостиринг
+++	🖳 PVT Дизайнер
	📐 Дизайнер ОФП
目	🏦 Дизайнер Скважин
E:	🐼 Дизайнер Сетей

Реализация ИИ в тНавигатор

Запрос пользователя на русском языке (вопрос или команда)

Отправка запроса на локальный сервер ИИ тНавигатора (не требует подключения к интернету)

Обработка запроса сервером при помощи большой языковой модели, которая дополнительно была обучена при помощи документации тНавигатор

ИИ Ассистент выдаёт полноценный ответ на вопрос пользователя

ИИ Ассистент создаёт workflow по запросу пользователя, выполняет его и визуализирует результат

Работа с ИИ Ассистентом

- Работа с ИИ Ассистентом происходит в форме общения в чате.
- После введения текстового запроса (вопроса) нажмите Enter или кнопку Получить ответ 🕨
- ИИ Ассистент запоминает историю (контекст) в рамках текущего сеанса
- 🔍 Для очистки истории разговора используйте кнопку Начать новый сеанс 횐

Общие вопросы

ИИ Ассистент основан на большой лингвистической модели и документации тНавигатор,

поэтому ему можно задавать вопросы не только по конкретным модулям, но и общие вопросы.

🗐 ИИ Ассистент	×
Здравствуйте! Чем я могу помочь?	
Шероховатость НКТ может быть задана в следующих единицах измерения: - METRIC: м - FIELD: фут - LAB: см	Я задается шероховатоств тист : ИИ Ассистент Здравствуйте! Чем я могу помочь?
	Пакер – это устройство, предназначенное, двух зон ствола скважины и изоляции внут пространства эксплуатационной колонны скважинной среды.

19

Вопросы по отдельным модулям или опциям

Вопросы к ИИ Ассистенту могут быть связаны с конкретной опцией или модулем. При этом

ответ ИИ будет содержать в себе подробную инструкцию или описание запрашиваемой опции

		3	ИИ Ассистент	
		×		
Как в симулят смоделирова	горе учесть растворимость СО2 в воде и ть процесс захоронения СО2 ?	•	Здравствуйте! Чем я могу помочь?	Перечисли ключевые слова для моделирован гистерезиса ОФП
делирования доступны целостность зого разрушения ет параметров ость-вода закачиваемого творимости ия параллельных расчет может			Для моделирования гистерезиса ОФП в формате IM, доступны следующие ключевые слова: 1. **HYSKRO** – Гистерезис ОФП нефти в системе вод нефть. 2. **HYSKRW** – Гистерезис ОФП воды в системе вод нефть. 3. **HYSTKROWR** – Параметры гистерезиса ОФП для воды. 5. **HYSTKRGR** – Параметры гистерезиса ОФП для воды.	/GE/ST да- ца- ія фазы фазы фазы
оах или и приведено в (Тест ажине), SIM7.8		\$	Эти ключевые слова позволяют задать различные параметры гистерезиса для различных фаз в моделировании нефтегазовых месторождений с использованием тНавигатора.	
я СО2 2, фазовое йства породы и				

Вывод интересующей информации с помощью ИИ Ассистента

ИИ Ассистент может быстро вывести на экран какую-либо информацию или статистику

Покажи статистику по объекту Permeability al который относится к 3D-сетке MODEL

ИИ Ассистент 25.1

•				
войство: Permeabi	lity along X			
Сетка: MODEL				
ип: Непрерывный				
Статистика				
Всего: 14487				
Минимум:	0.0000	00 мД		
Максимум:	1246.3	8010 мД		
Среднее:	369.98	317 мД		
Медиана:	336.56	6083 мД		
P10:	81.039	22 мД		
P90:	786.48	494 мД		
Стандартное откло	нение: 279.61	661 мД	-	
Сумма:	5359.9	4615 тыс. м	иД	
30	8 4 4		0 0	
25				
五 20 ····				
E C				
[□] 10				
0 100 200	200 400 500	600 700 90	0 000 1000	1200
100 200	500 400 500	000 700 000	300 1000	1200
Размер блока				
Вдоль I	Вдоль Ј		Вдоль К	
Мин.: 2999.96 №	Мин.:	1999.98 🛚	Мин.:	0.00 м
Макс.: 3000.03 м	Макс.:	2000.01 🛚	Макс.:	109.87
Среднее: 3000.00 м	Среднее:	2000.00 N	Среднее:	35.35 м
С блоками LGR				
Использовать ф	ильтр из акти	вного окна	: 2D	

Проведение расчётов с помощью ИИ Ассистента

- workflow по указанной задаче.

регионы Вороного)

Варианты моделей	
Геометрические объекты	
Q	. 7.
✓ ● ∰ 3D-сетки [1]	^
 Свойства 	[6]
O 🔂 Poros	ity
🔿 🔂 Perm	eability along X
🔿 🔂 Perm	eability along Y
🔿 🔂 Perm	eability along Z
	IM
💿 🚰 Voron	oiRegions
🗂 Поля ани	зотропии
> 💥 Разломы	сетки
📕 Горизонт	ы сетки
BlockedW	/ells
📅 Начальнь	ые блоки
🗙 🗌 🚔 Контакты	[1]
🗆 🛋 owc	
> 🗌 🎁 Геометри	я аквиферов [1]
🟲 Геомехан	ника горных пор
🖾 Блоки раз	зломов
🗸 🎹 Таблицы	сетки [1]
Grid Ta	able1
Геомехан	ника 3D 🗸 🗡
	/
Свойства флюидов	

ИИ Ассистент 25.1

ИИ Ассистент может выполнить различные расчёты и автоматически сгенерировать новый

В данном примере ИИ Ассистент создал новое свойство и произвёл над ним расчёт (Трёхмерные

Создание workflow по стандартным задачам

- одной стандартной операции.
- Для просмотра кода workflow стандартных операций нужно нажать кнопку </>
- Информация о созданном workflow отображается в log-окне

При выполнении задачи с предыдущего слайда, ИИ Ассистент автоматически генерирует новый

workflow, который сохраняется в окне Pacчёты и Workflow. Данный workflow состоит только из

	Переменные модели	Свойство: 🗗 VoronoiRegi	ons 🔻
×2	Python библиотеки	О Фильтр по скважинам 🥂 🕅	IODEL 💌
т[1	🗹 🌐 Трёхмерные регионы Вороного	Одиночная скважина	~
		🔘 Все скважины	
		Задать радиус	
*		П Исп. разрывность сетки	
*			
r h			
2			
6			
×			
-			
×			
GOI			
@x			
0			
~			
		Переменные модели Рифор быблиотеки ТІ ТІ ТІ Трёхмерные регионы Вороного С С С С С С С С С С С С С	Сетка: Переменные модели Рифол быблиотехи Фильтр по сказжиная X Фильтр по сказжиная X Фильтр по сказжиная В Се сказжина В Се ска

Создание workflow для нестандартных задач

Если запрос к ИИ Ассистенту содержать какие-либо нестандартные вычисления или операции, то ИИ Ассистент автоматически генерирует новый workflow в формате пользовательского Python кода (Опция Добавить код вручную). Например, если рассчитать новое свойство и попросить ИИ Ассистента вывести в log-окно информацию о его создании (нестандартная задача), то workflow будет в формате

пользовательского Python кода	Запуск: Workflow "autogenerated_wf_for_AI_assistant7". GUID: 0 Запуск: Добавить код вручную (элемент workflow 1). GUID: E957 Свойство трёхмерных регионов Вороного успешно создано на сет Завершено: дооавить код вручную (элемент workflow 1). всего вр Завершено: Workflow "autogenerated_wf_for_AI_assistant7". Всего	00AB71DF-4DAD-4228-0F64-DE7E2B20602A. 77E-E12E-D919-056D-D884F3EC68F8. тке MODEL. Лемени: 00.00.00. GUID: E957A77F-F12E-D919-056D-D884F3EC6 то времени: 00.00.00. GUID: D0AB71DF-4DAD-4228-0F64-DE7E2
	autogenerated_wf_for_Al_assistant7 🗸 🛟 🗳 🗳 🗗 📦 🖁 为 С К М 🔬 🛧	Добавить код вручную Редактор кода
 ИИ Ассистент Здравствуйте! Чем я могу помочь? Создай по сетке MODEL новое свойство, содержащее трёхмерные регионы Вороного, и выведи на экран сообщение о его создании Запрос завершен. 	Руthon библиотеки 1	<pre>1 grid_property_create_voronol_regions_3d(2 ····wells:=.typed_object_name(3 ····obj_name="wells", 4 ····obj_type="Wellset" 5 ····), 6 ···grid=-typed_object_name(7 ····obj_name="NODEL", 8 ····obj_type="Grid3d" 9 ····), 16 ···result_grid_property:=.typed_object_name(11 ····obj_name="VoronolRegions", 12 ····obj_type="Grid3dProperty" 13 ····), 14 ···well_filter_struct:=.WellFilterParameters(15 ····well_filter_struct:=.typed_object_name(17 ····obj_name="Allwells", 18 ····obj_type="wellFilter", 18 ····obj_name="AllwellsFilter", 18 ····obj_type="WellFilter", 18 ····obj_type="WellFilter", 18 ····obj_type="WellFilter", 18 ····obj_type="WellFilter", 18 ····obj_type="WellFilter", 19 ·····), 20 ····single_well_selector=·None 11 ····), 21 ···use_radius=True, 23 ···radius=100.0, 24 ···use_mesh_discontinuity=False 25 ···) 27 print("CBOЙCTBO·TPĒXMEPHBX·PERUOHOB·BOPOHORO·YCREWHO·CO3GAHO·Ha·CETKE-MODEL</pre>

Анализ Пласта

Проект <u>Д</u> изайнеры <u>М</u> оделирование <u>Н</u> астройки <u>Л</u> ицензии <u>П</u> о	омощь
Параллельность: 🛛 Ядер 🔄 🗖 Использовать GPU 🕬	
ΠΑΒИΓΑΤΟ	Ρ
Дизайнер Геологии Геологическое моделирование	Создание, ра интегрирован
Сорнорудное моделирование	РVТ Ди Работа с мод
Сейсмика Работа с сейсмическими данными	Дизайн Фильтрацион
Геостиринг Сопровождение бурения	В МатБа. Анализ матер
Дизайнер Скважин Модель скважины	Облачи Расчёты на л
Дизайнер Сетей Моделирование поверхностных сетей	Очере Управление
К Анализ Пласта Анализ динамики пласта	Раздел Управление

Анализ Пласта 25.1

Интерфейс

Вкладка «Редактирование объекта» для импорта данных и настройки анализа

Дерево объектов (скважин). Каждая скважина может иметь несколько наборов данных и вариантов анализа.

ТНАВИГАТОР

			Даг
Данн	ые по добыче		
	Время	Дебит нефти ст.м3/сут	
1	01.01.2015 0:00	121,1	
2	01.02.2015 0:00	117,678	
3	01.03.2015 0:00	115,32444	-
4	01.04.2015 0:00	112,017951	
5	01.05.2015 0:00	108,777592	
6	01.06.2015 0:00	106,60204	
7	01.07.2015 0:00	104,47	
8	01.08.2015 0:00	101,3806	
9	01.09.2015 0:00	100,352987	
10	01.10.2015 0:00	99,345928	
11	01.11.2015 0:00	97,359009	Таблица
12	01.12.2015 0:00	96,411829	аолица
13	01.01.2016 0:00	94,483592	
14	01.02.2016 0:00	91,593921	
15	01.03.2016 0:00	90,762042	
16	01.04.2016 0:00	89,946801	
17	01.05.2016 0:00	87,147865	
18	01.06.2016 0:00	86,404908	
19	01.07.2016 0:00	85,67681	
20	01.08.2016 0:00	82,963274	
21	01.09.2016 0:00	82,304008	
22	01.10.2016 0:00	81,657928	
23	01.11.2016 0:00	79,024769	
24	01.12.2016 0:00	78,444274	
25	01.01.2017 0:00	75,875389	
26	01.02.2017 0:00	73 357881	×

Создание скважин и Импорт данных

- Гибкая настройка импорта скважинных данных (кнопка Импорт 业 на панели инструментов)

Q					
~	A	Ск	важина 1		
			Набор данн	ых 1	
		/	Варианты ан	нализ	a
~	A	Ск	важина 2		
			Набор данн	•	Развернуть все дочерние объекты
		/	Варианты а		Свернуть все дочерние объекты
				A	Создать скважину
				Ħ	Создать набор данных
					Переименовать
				×	Удалить

1	🗾 Имг	торт				×
	Имя фа D:/DCA	айла: /well_data.csv				
	Настро	йки:				
Τ	ип вре	мени/даты:		Дата		~
				Исп. последнее з	начение при повторе да	Т
	Предпр Раздели	оосмотр итель:	Точка с запятой	 Пропустить строк: 	1	÷
		Время ~	Дебит нефти 🛛 🗸	Дебит воды 🛛 🗸	Пропустить строку	~ ^
		dd.mm.yyyy \sim	ст.м3/сут ~	ст.м3/сут ~		
	1	Date	Oil_rate, sm3/day	Water_rate, sm3/day		
	2	01.01.2015	121,1	0		
	3	01.02.2015	117,678	0		
	4	01.03.2015	115,32444	3,470143631		
	5	01.04.2015	112,0179512	4,4987129		

Возможность создания нескольких скважин (ПКМ в дереве объектов -> Создать скважину)

Скважина может иметь несколько наборов данных (ПКМ на скважине -> Создать набор данных)

Анализ кривых падения

- Выделите Варианты анализа Э Выберите Тип параметра и Тип модели Э Создать
- На вкладке Редактирование объекта задайте различные настройки:
- Параметр для анализа
- Дату окончания прогноза или его продолжительность
- Условие закрытия скважины
- Дату начала анализа
- Дату окончания анализа
- Тип модели
- Пороги релевантности

Редактирование объек	та 🗙	
Общие		_
Данные добычи:		H
Параметр:		Д
Настройки прогноза		
Экономическое ограничен	ние дебита	а, <mark>с</mark> т
Дата окончания прогноза:		
Продолжительность прогн	юза, сут:	
Результаты анализа		
Парамет	p	
Ост. извлекаемые запасы,	ст.м3	
Накопленная добыча по м	иодели, ст	с.мЗ
Извлекаемые запасы по м	юдели, ст	.мЗ
Коэффициент детермина	ции	
Накопленная добыча по и	істории, с	т.м
Извлекаемые запасы, ст.м	13	
Модели		
+ 🎢		
💌 Сегмент 1		
Дата начала:	01.01.202	3
Дата конца:	01.01.202	5
Модель	Arps	

Адаптация модели и результаты

- В нижней части вкладки Редактирование объекта указаны параметры выбранного типа модели
- Значения этих параметров можно изменить вручную (ручная адаптация)
- Кнопка Адаптация 🌽 используется для автоматического подбора значений этих параметров для максимизации коэффициента детерминации (автоматическая адаптация).
- Таблица Результаты анализа содержит значения исторической и рассчитанной на конец прогноза накопленной добычи, извлекаемых запасов и коэффициента детерминации

Кнопка фиксации значения (исключение из автоадаптации)

Анализ Пласта 25.1

Пороги релевантности данных

Редактирование объек	та Х	Срав	нение данных 🗙	+		
Общие						
Данные добычи:		Набор да	анных	\sim		
Параметр:		Дебит га	3a	\sim		
Настройки прогноза						
Экономическое ограничен	ние дебита	, ст.м3/сут	r: 0	0		
Дата окончания прогноза:			02.12.2027 0:00:00	~ o		
Продолжительность прогн	юза, сут:		1065			
Результаты анализа						
Парамет	гр		Значение			
Ост. извлекаемые запасы,	ст.мЗ		559809			
Накопленная добыча по м	иодели, ст	.м3	1158540			
Извлекаемые запасы по м	иодели, ст.	м3	1718349			
Коэффициент детермина	ции		0,954			
Накопленная добыча по и	истории, ст	г.м3	2280095			
Извлекаемые запасы, ст.м	1 3		2839904			
		1				
Модели + 🗡 Автоа	дапта	ация				
💌 Сегмент 1				×		
Дата начала:	01.01.2023	3	`	× •		
Дата конца:	ата конца: 01.01.2025 ~			· •		
🔻 Модель	Arps		```	/		

		Параметр	Значение		⋪
≥	Ð	Начальный дебит, ст.м3/сут	2658,67	Паг	
	Ē	Начальное падение, 1/сут	0,0017	IIa	Jan
	<u>-</u>	Показатель степени	0,29	ада	

Мин. порог адаптации, ст.м3/сут:	0,1
Макс, порог адаптации, ст.м3/сут:	3613

0

Интерактивное изменение параметров на графике

При изменении этих параметров моментально происходит пересчёт таблицы Результаты анализа

Редактирование с	объекта 🗙	Сравн	ение данных	×	4		- Графики
Общие	JODERIG	Сравн	спис данных	~		T	- patricia
 Данные добычи:		Набор да	нных		\sim		3500
Параметр:		Дебит газ	a		~		
Настройки прогноз	a						
Экономическое огра	ничение дебита	, ст.м3/сут:	100		\odot		3000
Дата окончания прог	ноза:		01.01.2028 0:00):00 ·	~ •		
Продолжительносты	прогноза, сут:		1095				2500
Результаты анализа	1						⊢
Пај	раметр		Значен	ие			3/cy
Ост. извлекаемые за	пасы, ст.м3	5	68424				ຼ <u>າ</u> 2000 ອີ
Накопленная добыч	а по модели, ст	.м3 1	158540				333
Извлекаемые запасы по модели, ст.м3		м3 1	726963				للله 1500 - ···
Коэффициент <mark>д</mark> етерм	Коэффициент детерминации						Де
Накопленная добыч	а по истории, с	т.м3 2	280095				
Извлекаемые запась	і, ст.м3	2	848518				1000
							дата н
Модели							ана.
• Сегмент 1					×		
Дата начала:	01.01.2023	3		1	⁄		0
Дата конца:	01.01.2025	5		1	• •		
• Модель	Arps			~	/		
		_		_	_		

Анализ Пласта 25.1

В окне графика можно изменить некоторые параметры настройки модели в интерактивном режиме. Изменение

происходит путём перемещения пунктирных линий и фиолетовых точек на графике при помощи ЛКМ

Мультисегментый анализ

Существует возможность создания Общие нескольких временных сегментов. Для Данные добычи: Параметр: этого необходимо нажать кнопку Настройки прогноза Дата окончания прогноза: Добавить сегмент 🕂 и указать Результаты анализа соответствующие даты и тип модели для каждого временного сегмента Коэффициент детерминации Автоадаптация производится сразу для Извлекаемые запасы, ст.м3 Модели + ۶ каждого временного сегмента Сегмент 1 Дата начала: Дата конца: Модель Добавить Сегмент 2 сегмент Дата начала: Дата конца: Модель Сегмент 1

ТНАВИГАТОР

Сегмент 2

Сравнение данных

- Доступна настройка расположения окон для удобства анализа результатов

Q

Настройка расположения OKOH

На вкладке Сравнение данных производится сравнение результатов для разных данных и вариантов анализа

Изменения для всех модулей

Проект <u>Д</u> изайнеры <u>М</u> оделирование <u>Н</u> астройки <u>Л</u> ицензии	<u>П</u> омощь
Параллельность: 🛛 Ядер 🔄 🗖 Использовать GPU 🕷	88
ΠΗΑΒИΓΑΤΟ	P
Сеологическое моделирование	Создание, р. интегрирова
Дизайнер ТПИ Горнорудное моделирование	РVТ ДІ Работа с мол
Сейсмика Работа с сейсмическими данными	Дизай Фильтрацио
Геостиринг Сопровождение бурения	В МатБа Анализ мате
Дизайнер Скважин Модель скважины	Облач Расчёты на
Дизайнер Сетей Моделирование поверхностных сетей	Очере Управление
Анализ Пласта Анализ динамики пласта	Раздел Управление

Изменение профиля специалиста открытого проекта

Все модули 25.1

Добавлена возможность изменить профиль специалиста для уже открытого проекта: проект

будет сохранен и переоткрыт, при этом интерфейс изменится и будет соответствовать новому

профилю (Настройки –) Управление лицензиями –) Переоткрыть проект с новым профилем)

34

Профиль Поверхностное обустройство

Профиль Поверхностное обустройство) 🛛 💾 💺 🛣 🎘 🥓 🛠 ⊄

профильноверхі	ioemoe objerponerbo,	Ŀ	L Объекты
🗐 Опции для Дизайнер Моделей		\$	Варианты моделей
 Выберите лицензию или несколько лицензий Если вы выберите несколько лицензий, вам будут 	для использования в проекте. г доступны все опции, предложенные в выбранных		Геометрические объекты
Профили	Молуль	1	Кважины
Пеофизика	🔽 🏹 Сейсмика		Фильтры по скваж > А Видимые скважин
П Геодогия нефти и газа	🖉 🏣 Геостиринг		Конструкция скважин
	🖉 🥥 Лизайнер Геологии		> 📲 Таблицы конструкци
С Геология твердых полезных ископаемых			123 Числовые параметры
П лисстирин	Пеомеханическая опция		авс Строковые параметр
Дизаинтрп	🖉 💁 РУТ Дизаинер		Кривые ГИС
Разработка месторождении нефти и газа	🗹 💟 Дизаинер ОФП		占 Интервальные замер
Поверхностное обустройство	🖾 🍘 Дизайнер Моделей		💬 Комментарии ГИС
	Симулятор ГРП		Результаты опробова
	🕗 🥂 Дизайнер Скважин		Растровые карты
	🗹 🚳 Дизайнер Сетей		има сатровые профили
	🕗 🗮 МатБаланс		🕥 2D-Карты
	🗹 😰 Командная Работа		🛜 Горизонты
	😎 🎘 Адаптация и Оптимизация		Таблицы
	🔽 🏄 Дизайнер ТПИ		🛨 TI 🗙 🖌
	М Анализ динамики пласта		Данные скважины
		1	Анализ данных
🐨 Выбрать всё 🍤 Убрать всё	😨 Выбрать всё 🖟 Снять выделение		Графики
Не спрашивать при открытии проекта	 Полный Дизайне Ограниче 	фу ра ^к енн	нкционал <mark>/</mark> Сетей, РVТ іый функци
	МатБала	HCa	а, предназн
		UB	

Добавлен новый профиль специалиста по поверхностному обустройству (Главное окно тНавигатора -> Создать проект ->

Расчётное ядро симулятора

Проект	Дизайнеры	<u>М</u> оделирование	<u>Н</u> астройки	<u>Л</u> ицензии	<u>П</u> омощь	
Паралл	ельность: 83	ядер 💌	Использое	ать GPU 🛛	38	
		HAB	ИГА	ΔTC	P	
	Диз Геолого	айнер Геол ическое моделирова	погии ание		Ŵ	ДИЗАЙН Создание, ра интегрирован
	ДИЗ Горнор	айнер ТПИ удное моделирован	ие		2	РVТ Ди Работа с мод
	Сей Работа	СМИКА с сейскическими д	анными			Дизайн Фильтрацион
	Сопров	СТИРИНГ зождение бурения				МатБал Анализ матер
	А ДИЗ Моделя	айнер Скв	ажин		C _a	Облачі Расчёты на з
	🖗 Диз	айнер Сет ирование поверхно	СТНЫХ СЕТЕЙ			Очере Управление о
	М Анализ	лиз Пласта динамики пласта	a		~	Раздел Управление

Симулятор 25.1

Укрупнение сеток в границах разломов

позволяет изменить правило укрупнения блоков в границах разломов с использованием

ключевого слова COARSEN

IGNORE_COARSEN_AT_FAULTS NO

Добавлена опция IGNORE_COARSEN_AT_FAULTS в ключевом слове TNAVCTRL. Данная опция

IGNORE_COARSEN_AT_FAULTS YES

Молекулярная диффузия в термических моделях

Для термических моделей поддержана опция моделирования молекулярной диффузии **DIFFCGZ, DIFOPTS, DIFFDEP**)

Симулятор 25.1

(ключевые слова DIFFCWX, DIFFCWY, DIFFCWZ, DIFFCOX, DIFFCOY, DIFFCOZ, DIFFCGX, DIFFCGY,

Влияние диффузии для углеводородного компонента. Со временем происходит перераспределение компонента в пласте за счет градиента концентрации

Дополнительная опция для WAG-гистерезиса ОФП

• Для моделей с гистерезисом ОФП добавлена опция, которая позволяет в качестве начальной WAG гистерезиса (кл. слово HYSTOTPS опция WAG_DRAIN_INIT)

Симулятор 25.1

кривой выбирать между кривыми первичного и вторичного дренажа при использовании опции

Геомеханический модуль

Проект	Дизайнеры	<u>М</u> оделирование	<u>Н</u> астройки	<u>Л</u> ицензии	<mark>П</mark> омощь	
Паралл	ельность: 83	адер 💌	Использов	ать GPU	98	
		HAB	ИГА	TC	P	
6	Диз Геологи	айнер Геол ческое моделирова	ПОГИИ ание			ДИЗАЙН Создание, ра интегрирован
	О Сорнор	айнер ТПИ удное моделирован	ие		2	РVТ Ди Работа с моди
	Сей Работа	СМИКА с сейсмическими д	анными			Дизайн Фильтрацион
	Сопров	СТИРИНГ ождение бурения				МатБал Анализ матер
	АИЗ Модель	айнер Скв	ажин		E _a	Облачн Расчёты на л
1	Ж ДИЗ Модели	айнер Сето прование поверхное	ЕЙ стных сетей			Очеред Управление о
	М Анализ	ЛИЗ ПЛАСТА динамики пласта	3		Ś	Раздел Управление р

Геомеханический модуль 25.1

Фильтр по Кривым ГИС в расчетах 1D Геомеханики

Во все расчеты 1D Геомеханики добавлен фильтр по Кривым ГИС. Эта опция позволяет применить расчет только к тем интервалам скважин, которые удовлетворяют заданному фильтром условию (Расчеты → Кривые ГИС → Геомеханика 1D)

Поровое давление по удельному		ротивлению (Metoa Eaton)					
Результат	con	permanennio (Merod Eatony					
Поровое давление, МПа: ≽ PP_Eaton_R								
Исходные данные								
Удельное электрическое сопротивление, Ом.м: 🗦 АТ90_FINAL								
Вертикальное напряжение, МП	la:		≥ SV					
✓ Фильтр по кривым ГИС Учитывать пропущенные з	знач	ения фильтро	в Кривых ГИС					
Метод пересечения		Исп.	Кривые ГИС/И	Правило				
🔘 Или 🎬	1	\checkmark	≿ GR →	> •	72			
Пне		Пишите						

Геомеханический модуль 25.1

Модель смыкания трещины Barton-Bandis

Добавлена модель смыкания трещины Barton-Bandis (ключевое слово GPERMBB)

 $\sigma_{\rm fr}$

- Симулятор: Свойства сетки Рассчитанные свойства Ширина трещины (модель смыкания...)
- **Дизайнер Моделей: Свойство флюидов Добавить Геомеханическая опция**

Геомеханический модуль, Дизайнер Моделей 25.1

Ο

Коэффициент теплового расширения породы

- В термических моделях коэффициент теплового расширения породы задается:

 - в каждом блоке сетки (ключевые слова **ТНЕХРСОЕ** FMAP, ***THEXPMAP**)

	Информация	
	Свойства сетки	
	 Начальные свойства 	
	Размер блока по Х Размер блока по Ү	- -
	Размер блока по Z Глубина	12
	Кровля Коэффициент песчанистости Пористость Проницаемость по Х	
	Проницаемость по Y Проницаемость по Z Модуль Юнга	
THEXPCOEF 0.0000548 /	Коэфф. Пуассона Геомеханич. активные блоки Растягивающее напряжение	н
0.0000218 /	Коэфф. пластичности Предел текучести Угол дилатации	T
	Коэффициент теплового расширения	
	Графики	
	Шаблоны графиков	
	Заводнение	• [
	2D гистограммы	
ΤΗΔΒИΓΔΤΟΟ	Свойства флюидов	
	Данные по скважинам	

Геомеханический модуль, Дизайнер Моделей 25.1

по геомеханическим регионам (GMNUM) (ключевые слова THEXPCOEF, *THEXPCOEF)

Симулятор: Свойства сетки -> Начальные свойства -> Коэффициент теплового расширения

Коэффициент теплового расширения породы

Дизайнер Моделей: Варианты моделей -> Ста

Геомеханическая опция

Геомеханический модуль, Дизайнер Моделей 25.1

Статиче	Статические свойства -> Свойства сетки ->							
	Проект Вид Настройки Файлы Мене Дизайнер Моделей							
	Image: Sector of the secto							
рка модели								
I. бокс і блок по оси Х 1 і блок по оси Ү 1	Последний блок по оси Х 58 Последний блок по оси У 45							
і блок по оси Z 1	📮 Последний блок по оси Z 138							
во своиства нент:	1	🕂 Добав						
Постоянная материа	Описание Секция Секция ФРОРС СР	Кл. слово ИСАРШМАР						
Предел прочности п Параметр функции в Множитель модуля Множитель модуля	ри растяжении (Drucker-Prager) (O PROPS GM язкопластичного течения (O PROPS GMV) объемной упругости нагрузки для Duncan-Chang (O PROPS DC) нагрузки для Duncan-Chang (O PROPS DC)	CAPTENMAP ISPOWERMAP BCOEFMAP ECOEFMAP						

Коэфф. разрушения для Duncan-Chang

Показатель степени модуля объемной упругости нагрузки для Duncan-Chang

Показатель степени модуля нагрузки для Duncan-Chang

Множитель модуля объемной упругости разгрузки-повторной загрузки для Duncan-Chang

Множитель модуля разгрузки-повторной загрузки для Duncan-Chang

Показатель степени модуля объемной упругости разгрузки-повторной загрузки для Duncan-Chang 0 PROPS DCURNBMAP PROPS DCURNEMAP Показатель степени модуля разгрузки-повторной загрузки для Duncan-Chang \bigcirc

Коэффициент теплового расширения

PROPS

PROPS

PROPS

PROPS

PROPS

PROPS

DCFRATIOMAP

DCNBMAP

DCNEMAP

DCURBCOEFMAP

DCURECOEFMAP

THEXPCOEFMAP

 \odot

 \odot

0

 \odot

0

0

44

Адаптация и Оптимизация

Проект	Дизайнеры	<u>М</u> оделирование	<u>Н</u> астройки	<u>Л</u> ицензии	<u>П</u> омощь	
Паралл	ельность: 8	ядер 💌	Использов	зать GPU 🛛	88	
		HAB	ИГА	٩ΤC	P	
	🗊 Диз Геолог	айнер Геол ическое моделирова	ПОГИИ ание			ДИЗАЙН Создание, ра интегрирован
	ДИЗ Горнор	айнер ТПИ удное моделирован	ие		E	РVТ Ди Работа с мод
	Сей Работа	СМИКа с сейсмическими д	анными			ДИЗАЙН Фильтрацион
	Сопров	СТИРИНГ зождение бурения				МатБал Анализ матер
	ДИЗ Модел	айнер Скв ь скважины	ажин			Облачн Расчёты на л
	🖗 Диз Модел	айнер Сете ирование поверхное	ЭЙ стных сетей			Очеред Управление о
	М Анализ	лиз Пласта з динамики пласта	3			Раздел Управление р

Адаптация и Оптимизация 25.1

Визуализация базового варианта на Гистограмме

на гистограмме (вкладка Гистограмма -> Показать базовый вариант)

Информация о проекте	🔅 Настройки 🛛 🗙	Целевые функции	🎹 Таблица 🗙	II. Гистограмма ×	🛛 Графики × 🕂	Ħ
Расчёты	 Настройки визуализации 					1
Целевые функции и результаты	 Показать легенду Настройки гистограммы 	11				
Q 🗗 🔽 🔻	Тип	10				ā
Дерево экспериментов	О Гистограмма	10				
1 [1] Латинский гиперкуб	Составная диаграмма					
> Е Целевые функции	 Настроики диаграммы Ориентация 	9				
марианты	О Горизонтальный					
Истор. значения	Вертикальная					
У Пруппы вариантов	Частей	8				,
 Experiments 	20					
1 [1] Латинский гиперкуб	Эначения	7				
✓ 1 A001/e1_v00000	🔘 Проценты			M3		
✓ 1 A001/e1_v00001	Вероятностные графики			E E		
✓ 1 A001/e1_v00002	Настройки CDF:	6				
✓ 1 A001/e1_v00003	Показать кр Размер линии: 2 💼			2		
✓ 1 A001/e1_v00004	Настройки PDF:	5		E		
A001/e1_v00005	🗌 Показать кр Размер линии: 2 🚖	Ŭ		35		
✓ 1 A001/c1 v00007	Показать квантили			.9		
1 A001/e1_v00008	Базовый вариант	4				
A001/e1_v00009	🕨 🗹 Показать базовый вариант			E €		
✓ 1 A001/e1_v00010	Настройки оси	2		at		
✓ 1 A001/e1_v00011	Объект	3		d		
✓ 1 A001/e1_v00012				89		
✓ 1 A001/e1_v00013		2				
A001/e1_v00014	> Скважины			- A A A A A A A A A A A A A A A A A A A		
A001/e1 v00015	 У Группы У Месторождение' 			Ö		
✓ 1 A001/e1_v00017	> FIPNUM v	1		a a		
✓ 1 A001/e1_v00018	Параметр:					
✓ 1 A001/e1_v00019	Q	0				
✓ 1 A001/e1_v00020	Дебиты					
✓ 1 A001/e1_v00021	 Накопл. показатели 		10	20	30	
✓ 1 A001/e1_v00022	Накопл. нефть		(Группа 'Fl	IELD']: Накопл. нефть. ты	с. ст.м3	
🔂 🐼 💿 🔛 📈 💷 😂	Накопл. вода 🗸		(F)			?

Адаптация и Оптимизация 25.1

• Добавлена возможность визуализировать значение выбранного параметра для базового варианта

Раскраска таблицы

Диапазон рассчитанных данных раскрашивается градиентом между макс. и мин. значениями.

Значения, близкие к среднему, выделяются белым цветом (вкладка Таблица -> Раскрасить таблицу)

✓ Месторождение Средне двление бря / АZIMUTH_FRAC ✓ AZIMUTH_FRAC 01 9,248741 108,9790266 114,2165809 02 10,9541626 100,0194735 60,0187136 03 12,275327 109,014735 51,200156 04 12,275327 109,014735 51,200156 04 14,06695 105,5847397 76,163523 05 4,6919127 112,536705 51,200156 05 14,05199 76,163523 16,0428032 05 14,9019127 102,049179 72,8204692 16,0428032 05 14,9019127 102,049179 72,8204692 16,0428032 05 14,9019127 102,049179 82,624803 16,01273 05 14,903899 103,22015 64,621831 16,01273 05 2,184594 100,9266997 81,61171 16,01274 05 2,268599 114,6458969 101,5402081 16,02081 05 2,6140255 143,0416107 63,840156 14,014161 05	функции	і 🌐 Таблица 🗙	Ĺ, 2D × 🕞 Про	кси модели × 🕂		
N.3 9.2487841 108,9790268 114,2165809 00027 10,9541626 110,0896988 85,3310142 00011 12,4755327 109,0134735 60,1187136 00121 12,462965 105,6572495 51,2001596 00121 14,06695 105,587397 76,158523 00122 14,06695 100,049179 72,8204692 00123 15,4001417 110,049179 72,8204692 00124 15,4001417 100,049179 72,8204692 00120 17,982824 116,9780502 88,2244803 00120 17,982824 16,9780502 88,2244803 00120 17,982824 109,926997 16,619174 00120 22,66589 114,2458969 101,5402081 00121 22,145834 110,8148804 84,6676851 00120 22,66589 114,355672 105,5799965 00121 23,216996 114,935672 105,799965 00121 27,641254 142,6681561 97,18462 00122		📅 Месторождение Де	ебит нефти ст.м3/сут	Масторождение Среднее давление бар	AZIMUTH_FRAC	^
000000000000000000000000000000000000	0013	9,2487841		108,9790268	114,2165809	
00003 12,2753327 109,0134735 60,1187136 001 12,462965 105,6572495 51,2801596 001 14,1066895 105,5847397 76,1638523 00006 14,6919127 112,586705 51,4051999 00006 14,6919127 102,049179 72,8204692 00002 17,5108261 109,3462677 106,0428032 00002 17,9108261 109,3462677 67,4621237 00002 17,935809 113,2722015 67,4621237 00012 17,935809 109,226997 10,5402081 00012 2,184594 109,1448904 94,6876851 00012 2,2687937 111,1522141 99,2658566 00012 2,2697937 111,1522141 99,2658566 00012 2,642373 114,659758 133,9915018 00012 2,642483 109,142081 144,26881561 0013 2,6424373 116,567737 13,282197 0014 2,6424373 12,64374 16,1567307 13,2821978	00027	10,9541626		110,0896988	85,3301042	
000011 12,462965 105,6572495 51,2801596 00022 14,1066895 105,5847397 76,1638523 00051 14,6919127 112,536705 51,4051999 00029 15,4001417 100,049179 72,8204692 000290 15,108261 109,3462677 88,2244803 000291 17,982824 116,9780502 88,2244803 000291 17,982829 113,2722015 67,4621237 001291 19,8337879 109,2269897 81,6191714 00120 22,68589 114,6458969 101,5402081 00120 22,68589 114,6458969 101,5402081 00120 22,64893 144,5385639 55,6346156 00120 23,210996 117,595639 55,6346156 00120 24,704155 142,5234528 53,9915018 00120 25,64924373 111,687758 11,1687758 001210 27,6410294 126,681561 96,718462 00131 27,840513 125,853607 52,2933584 00	00003	12,2755327		109,0134735	60,1187136	
00002 14,1066895 105,5847397 76,1638523 00002 14,6919127 112,536705 51,4051999 00002 15,4001417 100,049179 72,8204992 00002 17,5108261 100,049079 72,8204992 00002 17,9828224 116,9780502 88,2244803 00012 19,8337879 109,2269897 81,6191714 00012 2,83589 101,5402081 10,5402081 00012 2,826889 114,6458969 101,5402081 00012 2,2667937 111,1522141 92,655866 0012 2,704105 142,5234528 53,9915018 0013 2,704195 143,041617 63,37657 0014 2,7041024 12,6881561 96,718462 0015 2,6824373 111,6857758 71,1646698 0016 2,74410294 12,6881561 96,718462 0019 2,7640294 120,0494156 104,3477327 0019 2,880513 12,580513 12,580513 0019 2,8	000 <mark>1</mark> 1	12,462965		105,6572495	51,2801596	
000000000000000000000000000000000000	00022	14,1066895		105,5847397	76,1638523	
00024 15,4001417 110,2049179 72,8204692 00029 17,5108261 109,3462677 106,0428032 00021 17,9828224 116,9780502 88,2244803 00024 19,7035809 113,2722015 67,4621237 00026 19,8337879 109,2269897 81,6191714 00026 22,1845894 110,8148804 84,6876851 00026 22,66589 101,5402081 92,58556 00270 22,697937 111,522141 99,258556 00281 22,2180996 117,958639 55,344156 00291 22,2180996 117,958639 55,344156 00210 22,640255 143,0416107 64,3876527 00211 23,140294 142,6881561 96,718462 00212 26,8224373 111,6857758 71,1646698 00219 27,8100513 120,0491156 104,3477327 00214 24,6083561 102,049135 107,2977912 00214 24,16264 116,1567307 113,2821978 0021	00006	14,6919127		112,536705	51,4051999	
00002 9 17,5108261 109,3462677 106,0428032 00002 1 17,9828224 116,9780502 88,2244003 00004 1 19,7035809 113,2722015 67,4621237 00008 1 19,8337879 109,2669977 81,6191714 0002 6 22,145384 10,8148804 84,687651 0003 0 22,268589 114,6458969 101,5402081 0003 2 22,697937 111,1522141 99,265866 0014 2,3180996 117,9586639 55,6346156 0015 2,261402855 142,5234528 53,9915018 0016 2,26,6824373 114,3736572 105,799965 0017 2,26,8224373 111,6857758 71,1646698 0018 2,1416264 116,1567307 113,2821978 0019 1,7188778 120,0494156 104,3477327 001 1 31,7188778 143,717783 61,061992 001 1 31,7188778 143,717783 61,061992 001 1 31,7188778 143,717783 61,061992 001 1 31,7188778 143,24205933 61,6527836 001 1 31,7188778	00C <mark>2</mark> 4	15,4001417		110,2049179	72,8204692	
17,9828224 116,9780502 88,2244803 19,7035809 113,2722015 67,4621237 00004 19,8337879 109,2269897 81,6191714 00016 22,1845894 110,8148004 84,6876851 00017 22,68589 114,6458969 101,5402081 00018 22,2697937 111,1522141 99,2658566 00011 23,2180996 117,9586639 55,6346156 24,704155 142,5234528 53,9915018 00012 26,8224373 111,6857758 105,799965 00010 27,6410294 142,6881561 96,718462 00011 21,188778 125,8853607 52,993584 00012 26,8224373 116,1567307 113,2821978 00019 27,6410294 142,6881561 96,718462 00011 31,7188778 143,717783 61,0661992 00011 31,718778 143,717783 61,0661992 00012 36,084671 142,425933 61,6527836 00013 31,7188778 113,271783 61,065192 00014 32,6935883 117,5026245	00C <mark>2</mark> 9	17,5108261		109,3462677	106,0428032	
19,7035809 113,2722015 67,4621237 0000 4 19,8337879 109,2269897 81,6191714 0000 6 22,1845894 110,8148004 84,6876851 0000 0 22,268589 114,6458969 101,5402081 0000 3 22,2697937 111,1522141 99,2658566 0000 4 23,2180996 117,9586639 55,6346156 23,2180996 114,3736572 105,799965 0000 2 26,402855 143,0416107 64,3876527 000 0 27,6410294 142,6881561 96,718462 000 0 27,6410294 142,6881561 96,718462 000 0 27,6410294 142,6881561 96,718462 000 0 27,6410294 142,6881561 96,718462 000 0 27,6410294 142,6881561 96,718462 000 0 27,6410294 142,6881561 104,3477327 000 0 29,5483524 120,0494156 104,3477327 000 1 31,7188778 143,717783 61,0681992 000 0 38,604671 142,425933 61,6527836 000 0 33,6084671 <th>00002</th> <td>17,9828224</td> <td></td> <td>116,9780502</td> <td>88,2244803</td> <td></td>	00002	17,9828224		116,9780502	88,2244803	
00008 19,8337879 109,2269897 81,6191714 00008 22,1845894 110,8148804 84,6876851 00009 22,668589 114,6458969 101,5402081 000012 22,697937 111,1522141 99,2658566 00012 23,2180996 117,9586639 55,6346156 00012 23,0499268 114,3736572 105,799965 00012 26,8224373 111,685758 71,1646698 00010 27,6410294 142,6881561 96,718462 00010 27,6410294 120,0491156 143,22978 00113 17,188778 120,0491156 104,3477327 00114 32,693583 117,502645 107,2977912 00115 32,8174629 118,521617 117,7971558 00114 32,693583 117,502645 107,2977912 00115 32,8174629 118,521617 117,7971558 00114 32,693583 116,5627836 16,527836 00115 32,8174629 118,5216217 17,7917158 <t< td=""><th>00004</th><td>19,7035809</td><td></td><td>113,2722015</td><td>67,4621237</td><td></td></t<>	00004	19,7035809		113,2722015	67,4621237	
000000000000000000000000000000000000	8000	19,8337879		109,2269897	81,6191714	
0000 00 22,268589 114,6458969 101,5402081 0000 23 22,697937 111,1522141 99,2658566 0001 2 23,2180996 117,9586639 55,6346156 0001 2 24,704155 142,5234528 53,9915018 0001 2 26,0499268 114,3736572 105,799965 0001 2 26,8224373 111,6857758 71,1646698 001 10 27,6410294 142,6881561 96,718462 001 10 27,6410294 116,1567307 113,2821978 001 10 27,643524 120,0494156 104,3477327 001 12 26,935883 117,5026245 107,2977912 001 13 37,7188778 114,521217 117,797158 001 14 32,693583 117,5026245 107,2977912 001 15 32,8174629 118,5216217 17,797158 001 14 32,693583 116,3621521 96,9914215 001 15 35,093727 16,3621521 96,9914215 001 14 32,0804671 120,3717346 7,5197158	00C <mark>2</mark> 6	22,1845894		110,8148804	84,6876851	
000 23 22,697937 111,1522141 99,2658566 000 21 23,2180996 117,9586639 55,6346156 000 21 24,704155 142,5234528 53,9915018 000 25 26,1402855 143,0416107 64,3876527 000 12 26,8224373 111,6857758 71,1646698 001 02 27,6410294 142,6881561 96,718462 001 03 27,8580513 120,0494156 104,3477327 001 04 29,5463524 120,0494156 104,3477327 001 05 32,6935883 117,5026245 107,2977912 001 04 32,6935883 118,5216217 117,7971558 001 05 33,6084671 142,4205933 61,6527836 001 05 35,5093727 116,3621521 96,9914215 001 05 35,7093727 116,3621521 96,9914215 001 07 36,7109795 120,3717346 75,197158 001 07 36,709795 120,3717346 75,197158 001 08 32,027283 140,8170776 86,6977537	000 <mark>8</mark> 0	22,268589		114,6458969	101,5402081	
23,2180996 23,2180996 117,9586639 55,6346156 24,704155 142,5234528 53,9915018 20009 25,0499268 114,3736572 105,799655 20012 26,8224373 111,6857758 71,1646698 20010 27,6410294 142,6881561 96,718462 20019 27,8580513 125,885607 52,2993584 20019 27,8580513 120,0494156 104,3477327 20019 29,5463524 120,0494156 104,3477327 20019 31,7188778 1143,7171783 61,0861992 20019 32,6935883 117,5026245 107,2977912 20019 33,6084671 142,4205933 61,6527836 20019 33,6084671 120,3717346 77,5197158 20019 33,6084671 120,3717346 77,5197158 20019 32,6736 16,627836 60 9 20019 32,67836 116,3621521 96,9914215 120,3717346 77,5197158 20019 32,7866936 140,8170776 86,6977537 120,374555 60 >	00C <mark>2</mark> 3	22,697937		111,1522141	99,2658566	
000000 24,704155 142,5234528 53,9915018 000000 25,0499268 114,3736572 105,79965 000000 26,1402855 143,0416107 64,3876527 000000 26,8224373 111,6857758 71,1646698 000000 27,6410294 142,6881561 96,718462 000000 27,8580513 125,8853607 52,2993584 000000 29,2463524 116,1567307 113,2821978 0000000 31,7188778 120,0494156 104,3477327 00000000 31,7188778 117,5026245 107,2977912 000000000000000000000000000000000000	00721	23,2180996		117,9586639	55,6346156	
000009 25,0499268 114,3736572 105,799965 000025 26,1402855 143,0416107 64,3876527 00012 26,8224373 111,6857758 71,1646698 0012 27,6410294 142,6881561 96,718462 0012 27,8580513 125,8853607 52,2993584 0012 27,8580513 120,0494156 143,2821978 0012 29,5463524 120,0494156 104,3477327 0012 31,7188778 143,717783 61,0861992 0012 3,6935833 117,5026245 107,2977912 0012 3,6084671 142,4205933 61,6527836 0012 3,6084671 142,4205933 61,6527836 0012 3,717462 120,3717346 77,5197158 0012 3,786936 140,8170776 86,6977537 0012 3,786936 140,8170776 60	00016	24,704155		142,5234528	53,9915018	
000 25 26,1402855 143,0416107 64,3876527 000 12 26,8224373 111,6857758 71,1646698 000 10 27,6410294 142,6881561 96,718462 000 19 27,8580513 125,8853607 52,2993584 000 18 28,1416264 116,1567307 113,2821978 000 17 29,5463524 120,0494156 104,3477327 000 14 32,6935883 117,5026245 107,2977912 000 15 32,8174629 118,5216217 117,7971558 000 16 36,084671 142,4205933 61,6527836 000 17 36,7109795 120,3717346 77,5197158 000 17 36,709795 120,3717346 60 000 17 36,709795 120,3717346 61,6527836 000 17 36,7109795 120,3717346 77,5197158 000 17 36,7109795 120,3717346 60 000 18 37,7866936 140,8170776 86,6977537 000 19 34,2027283 120,3794556 60	00009	25,0499268		114,3736572	105,799965	
000 12 26,8224373 111,6857758 71,1646698 000 10 27,6410294 142,6881561 96,718462 000 19 27,8580513 125,8853607 52,2993584 000 18 28,1416264 116,1567307 113,2821978 000 17 29,5463524 120,0494156 104,3477327 000 18 31,7188778 143,7171783 61,0861992 000 14 32,6935883 117,5026245 107,2977912 000 15 32,8174629 118,5216217 117,7971558 000 15 32,6084671 142,4205933 61,6527836 000 17 36,7109795 120,3717346 75,197158 000 17 37,7866936 140,8170776 86,6977537 000 15 32,2027283 120,3794556 60 <	00025	26,1402855		143,0416107	64,3876527	
000010 27,6410294 142,6881561 96,718462 00019 27,8580513 125,8853607 52,2993584 00018 28,1416264 116,1567307 113,2821978 00017 29,5463524 120,0494156 104,3477327 00014 32,6935883 117,5026245 107,2977912 00015 32,8174629 118,5216217 117,7971558 00020 33,6084671 142,4205933 61,6527836 000217 36,7109795 120,3717346 77,5197158 000228 37,7866936 140,8170776 86,6977537 000230 42,2027283 120,3794556 60 <	00012	26,8224373		111,6857758	71,1646698	
000 19 27,8580513 125,8853607 52,2993584 000 18 28,1416264 116,1567307 113,2821978 000 17 29,5463524 120,0494156 104,3477327 000 18 31,7188778 61,0861992 117,5026245 000 14 32,6935883 117,5026245 107,2977912 000 15 32,8174629 118,5216217 117,7971558 000 05 35,5093727 116,3621521 96,9914215 000 07 36,7109795 120,3717346 77,5197158 000 07 37,7866936 140,8170776 86,6977537 000 08 42,0227283 120,3794556 60 <	00010	27,6410294		142,6881561	96,718462	
00018 28,1416264 116,1567307 113,2821978 00017 29,5463524 120,0494156 104,3477327 00011 31,7188778 61,0861992 00014 32,6935883 117,5026245 107,2977912 00015 32,8174629 118,5216217 117,7971558 00015 33,6084671 142,4205933 61,6527836 00017 36,7109795 116,3621521 96,9914215 00018 37,7866936 140,8170776 86,6977537 000128 37,7866936 140,8170776 86,0977537	00019	27,8580513		125,8853607	52,2993584	
000 17 29,5463524 120,0494156 104,3477327 000 10 31,7188778 61,0861992 000 14 32,6935883 117,5026245 107,2977912 000 15 32,8174629 118,5216217 117,7971558 000 20 33,6084671 142,4205933 61,6527836 000 25 35,5093727 116,3621521 96,9914215 000 26 37,7866936 120,3717346 77,5197158 000 27 36,7109795 140,8170776 86,6977537 000 28 37,7866936 120,3794556 60 <	00018	28,1416264		116,1567307	113,2821978	
00001 31,7188778 143,7171783 61,0861992 00014 32,6935883 117,5026245 107,2977912 00015 32,8174629 118,5216217 117,7971558 00020 33,6084671 142,4205933 61,6527836 000205 35,5093727 116,3621521 96,9914215 00027 36,7109795 120,3717346 77,5197158 00028 37,7866936 140,8170776 86,6977537 000200 42,2027283 120,3794556 60 <	000 <mark>1</mark> 7	29,5463524		120,0494156	104,3477327	
00014 32,6935883 117,5026245 107,2977912 00015 32,8174629 118,5216217 117,7971558 00020 33,6084671 142,4205933 61,6527836 000205 35,5093727 116,3621521 96,9914215 000207 36,7109795 120,3717346 77,5197158 00028 37,7866936 140,8170776 86,6977537 000205 42,2027283 120,3794556 60	00001	31,7188778		143,7171783	61,0861992	
000 15 32,8174629 118,5216217 117,7971558 000 20 33,6084671 142,4205933 61,6527836 000 25 35,5093727 116,3621521 96,9914215 000 26 36,7109795 120,3717346 77,5197158 000 28 37,7866936 140,8170776 86,6977537 000 29 42,2027283 120,3794556 60	000 <mark>1</mark> 4	32,6935883		117,5026245	107,2977912	
000 20 33,6084671 142,4205933 61,6527836 000 05 35,5093727 116,3621521 96,9914215 000 07 36,7109795 120,3717346 77,5197158 000 28 37,7866936 140,8170776 86,6977537 000 00 42,2027283 120,3794556 60 <	00015	32,8174629		118,5216217	117,7971558	
00005 35,5093727 96,9914215 4 00007 36,7109795 120,3717346 77,5197158 00028 37,7866936 140,8170776 86,6977537 000000 42,2027283 120,3794556 60	00020	33,6084671		142,4205933	61,6527836	
00007 36,7109795 77,5197158 00028 37,7866936 140,8170776 86,6977537 00000 42,2027283 120,3794556 60 <	00005	35,5093727		116,3621521	96,9914215	
00028 37,7866936 86,6977537 00020 42,2027283 120,3794556 60	00007	36,7109795		120,3717346	77,5197158	
000.2 42,2027283 120,3794556 60 V	00028	37,7866936		140,8170776	86,6977537	
	00000	42,2027283		120,3794556	60	~

Симулятор трещин ГРП

Проект	<u>Д</u> изайнеры <u>М</u> оделирование <u>Н</u> астройки <u>Л</u> ицен	нзии <u>П</u> омощь
Паралл	іельность: 🛛 🗴 🚽 🗖 Использовать GP	0 000
	ТНАВИГАТ	OP
	Дизайнер Геологии Геологическое моделирование	Создание, ра интегрирован
	У Дизайнер ТПИ Горнорудное моделирование	РVТ Ди Работа с мод
	Сейсмика Работа с сейсмическими данными	Дизайн Фильтрацион
	Сопровождение бурения	В МатБал Анализ матер
	Дизайнер Скважин Модель скважины	Облачи Расчёты на л
1	Коделирование поверхностных сетей	Счеред Управление о
	•••••••••••••••••••••••••••••••••••••	Раздел Управление

Симулятор трещин ГРП 25.1

Моделирование термического ГРП

Поддержана возможность моделирования термических эффектов при проведении ГРП

	Ha	ачальный флюид	скважины	Режим закачки	жидкост	ги ГРП	Кривая DFIT	Кислотный ГРП	Термі	ические эффек	ты
	✓ Включить термические эффекть										
h	Ца			Режим закации жилио	сти ГРП	Kousa	DEIT Kuchotu	ий ГРП Терминески			
ŀ	Нача	чальный флюйд ске ало закачки 9/14/20)22 12:11:15 F	РМ	Спиттт	Кривая	Кислотн	витермически	е эффек	П	
Ir		Статус скважи	Описани	е Пропант	Жид	кость	Концентрация	Температура нагн. фл	іюида, F	Контроль зака	. ч
	1	Открыть 👻		Пропант 1 🔍	Жидкос	ть1 Q	0	100		Дебит ч	81
	2	Остановить 🔻		Пропант 1 🔍	Жидкос	ть1 🔍	0	100		Дебит ч	r 0
		Пишите или									

Свойства породы Парамет Освойство 🗹 User array	ры напряж. состояния (ARRPR) (Edit)	Условия
Критерий разрушения		
Алгоритм:		
PZS	~	
Предельное значение, фунт-с	ила/кв. дюйм	
Постоянная	2320.60380368	
Оказание Свойство	User array (ARRP)	ZS) (Edit)
<u></u>	PZS Maкc.: 0	
 Авто-расчет по пористости 	РZS контраст: 0	
О Свойство		
Свойства для термического ГР	Π	
Плотность породы, фунт/фут	}	
Постоянная 131.09871721		
○ Свойство		
Удельная теплоемкость пород	цы, BTU/фунт/R	
Постоянная 0.57323015		
○ Свойство		
Валовая теплопроводность, В	ГU/фут/сут/R	
Постоянная 32.099406		

Свойства породы	Параметры напряж. состояния	Условия і
• Базовые условия	а пласта	
Поровое давление	е, фунт-сила/кв. дюйм	
О Постоянная 20	30.52832822	
Освойство	User array (ARRPORE_P) (Edit)	
Пористость, доля		
О Постоянная 0.	1	
О Свойство	Porosity	
Проницаемость (Х	(-компонента), мД	
О Постоянная 10)	
О Свойство	PERMX	
Проницаемость (У	(-компонента), мД	
О Постоянная 10)	
О Свойство	PERMY	
Проницаемость (7	-компонента) мЛ	
О Постоянная 10)	
Своиство	PERMZ	
Крит. давление ра	скрытия трещины, фунт-сила/кв. дк	ойм
• Постоянная 0		
О Свойство	Property1	
– Температура плас	та, F	
Постоянная 30	0	
О Свойство	7	

пласта ▼

Моделирование термического ГРП

Поддержана возможность моделирования термических эффектов при проведении ГРП

повышается хрупкость породы при закачке холодной воды)

Отображение блоков с перфорациями

• Добавлена возможность выделения блоков трещины ГРП с перфорациями

🔅 Настройки	7
Основные настройки	^
🗸 Скважины	
Фильтры по скважинам	
Лизайнер Сетей и в составителя состав составителя составителя составителя составителя составителя составителя составителя составителя составителя со составителя составителя составителя составителя составителя составителя составителя составителя составителя сост составителя составителя составителя составителя составителя составителя составителя составителя составителя соста составителя составителя составителя составителя составителя составителя составителя составителя составителя со	
 Результаты Симулятора ГРП Res3 	J
Синхронизация	Y
Пип значений глубины	^
Дискретный режим	
🗹 Показать заголовок	
Автообновление вида	
🗹 Показать область фильтра	
🗹 Показывать гистограмму	
Макс. значение гистограммы	
🗹 Показать мин. и макс. значение	
Частей гистограммы 1000 🐥	
🔘 Все временные шаги	
Текущий временной шаг	
По кривой ГИС	
🔘 Задать границы	
Мин. 5.4296259е-06	
Макс. 0.013296928	
Знаков после запятой	
Точность 2 🚔	
Вкл. задание шага подписи	
Шаг подписи 0	
Показать ячейки с перфорациями Ширина линии, подсвечивающей ячей	

Дизайнер ОФП

Проект /	Дизайнеры	<u>М</u> оделирование	. <u>Н</u> астройки	<u>Л</u> ицензии	<u>П</u> омощь	
Параллел	льность: 8 я	дер 💌	🗌 Использоі	зать GPU 🔯	98	
		HAB	ИГА	٩ΤC	P	
Ś	ДИЗа Геологи	айнер Геолина ческое моделиров	ЛОГИИ ание			ДИЗАЙН Создание, ра интегрирова
Ž	С Сорнору	айнер ТПИ идное моделирован	ние			РVТ Ди Работа с мод
E	Сей Работа	СМИКА с сейсмическими д	анными			Дизайн Фильтрацион
	Сопров	СТИРИНГ ождение бурения				МатБа. Анализ матер
Ê	ДИЗа Модель	айнер Скв	ажин		E _n	Облачі Расчёты на л
	АИЗа Модели	айнер Сет рование поверхно	СЙ стных сетей			Очере Управление
	К Анализ	пиз Пласта динамики пласта	a		 Control 	Раздел Управление

Дизайнер ОФП 25.1

Изменение смачиваемости

Поддержана возможность моделирования изменения смачиваемости породы, обеспечиваемого накоплением ПАВ (SURFACTW) (Варианты → Масштабированные ОФП → ПАВ → 🗟 Включить влияние смачивания)

Интерполяция концевых точек для смачивания водой:

 $S_{Wc}^{imm} = F_{imm}S_{Wc}^{ow} + (1 - F_{imm})S_{Wc}^{ww}$ $S_{Wcr}^{imm} = F_{imm}S_{Wcr}^{ow} + (1 - F_{imm})S_{Wcr}^{ww}$ $S_{Wmax}^{imm} = F_{imm}S_{Wmax}^{ow} + (1 - F_{imm})S_{Wmax}^{ww}$

Интерполяция концевых точек для смачивания нефтью:

 $S_{Wc}^i = F_{mis}S_{Wc}^{mis} + (1 - F_{mis})S_{Wc}^{imm}$ $S_{Wcr}^i = F_{mis}S_{Wcr}^{mis} + (1 - F_{mis})S_{Wcr}^{imm}$ $S_{Wmax}^{i} = F_{mis}S_{Wmax}^{mis} + (1 - F_{mis})S_{Wmax}^{imm}$

Интерполяция несмешивающейся ОФП:

 $k_{rw}^{imm} = F_{imm} \cdot k_{rw}^{ow} + (1 - F_{imm}) \cdot k_{rw}^{ww}$

Аналогично рассчитываются несмеш. ОФП нефти в системе вода-нефть и нефть-газ и капиллярное давление в системе вода-нефть

Дизайнер ОФП 25.1

Группы регионов (1)

Поддержано создание групп регионов, в которые включаются варианты ОФП и капиллярного давления, относящиеся к одному варианту модели

Варианты					
Q					
🗸 🗹 💥 Группы регионов	Создать	Создать новый предвыбр	анный вариант		
🗸 🗹 📈 Группа регионов 1	копию копию	Создать новую папку			
🗹 🎛 Drainage	Т] Переименовать	Создать новую группу ин	терполяции		
Imbibition	📕 🗙 Удалить	Создать новый объедине	нный вариант	диалоговое о	кно позволяе
V = Наблицы семейства 2	Конвертировать в таблицу семейства 1	Создать новую группу ре	гионов	создать неск	олько групп
✓	Конвертировать в таблицу семейства 4				
🔽 🛄 Drainage	Исп. Ј-функцию для	F		регионов сразу в	
🔽 🎞 Imbibition	Использовать Рс для	•		количества кри	вых, наприме
🗌 🔛 Two-phase mode	2			дренировани	я и пропитки
🔲 🗮 Three-phase mode	је Конвертировать в Согеу по умолчанию				
	Конвертировать в LET по умолизнию	📑 Создать новые гр	уппы регионов		×
	Конвертировать в LET	Q		Дренирование Пропитка	ПАВ Смеши 🔍 🕨
🧾 Добавить вариант в группу регионов 🛛 🗙	Применить кл. слова глобальных настроек к	фильтру 🔽 🗆 💥 Группы ре	гионов	Drainage	
Имя варианта	Применить кл. слова глобальных настроек и	гистерезиса к ф 🛛 🗡 🗌 💥 Regions	s Group 1		
Drainage	Добавить в фильтр		ee-phase mode		
Имя группы регионов	Удалить из фильтра	🗸 🖃 🖽 Таблицы с	емейства 2		
Regions Group 1	Добавить вариант в группу регионов		w RP WAG		
Опция	Разделить варианты на группы регионов	🗾 🖉 🧮 Dra	inage		
Лренирование		🗆 🎛 Imb	vibition		
			-phase mode		
взять настроики из варианта	Опция взять настройки	ИИЗ 🛛 🖽 Тиг	e-phase mode	+ ×	
ОК Отмена	варианта применяе	T III		Шаблон названия групп	
		рсой		Группа регионов	
ΤΗΑΒИΓΑΤΟΡ	настроики варианта ко	ВСЕИ Выбрать всё	Снять выделение	🖂 Взять настройки из дренирован	ия
	группе регионов			ОК	Отмена 🕜

54

Группы регионов (2)

Вкладка Настройки регионов позволяет выбрать опции, которые будут отображены на графике масштабированных ОФП и перенесены в Дизайнер Моделей

Группы регионов (3)

руппы регионов можно привязать к вариантам моделей в Дизайнере Моделей

🛛 🛃 Имі

Вывод результатов

Секторное моделир...

Менеджер проектов:...

Workflow

Coupling

Данные по скважинам 🛙

Дизайнер ОФП

Damuauru			
Варианты У У Группы регионов Группа регионов 1 Drainage Imbibition Taблицы семейства 2 Variant 1 Variant 1 Vorkflow_RP_WAG Drainage Imbibition Two-phase mode Three-phase mode	Настройки регионов + Вариант дренирования: Drainage ▼ ♥ Гистерезис Вариант пропитки: Imbibition Двухфазный вариант воды: Two-phase mode Tpёхфазный вариант воды: Three-phase mode ▶ □ ПАВ ▶ □ Смешивающееся вытеснение ▶ □ Низкая соленость		 Настидизания Дизания В Диания В Диа
	 Настро Тип модел Опред Статич Аквиф 	йки Я Я В В В В В В В В В В В В В В В В В	 Свойства в Свойства в

тройки, заданные для группы регионов в айнере ОФП автоматически переносятся в айнер Моделей

изайнере Моделей при маппинге свойств оидов достаточно выбрать нужную группу **ИОНОВ**

V V Imported RP Dynamic Model Регион насыш Имя таблицы	
Свойство Свойс	лицы vrted RP Dy

РVТ Дизайнер

Проект	<u>Д</u> изайнеры <u>М</u> оделирование	≥ <u>Н</u> астройки	<u>Л</u> ицензии <u>Г</u>	<u>]</u> омощь	
Паралл	ельность: 8 ядер 💌	П Использова	ать GPU 🚳		
	THAB	ΝΓΑ	ΔTO	Ρ	
	Э Дизайнер Гео Геологическое моделиров	ЛОГИИ зание			ДИЗАЙН Создание, ра интегрирова
	Дизайнер ТПІ Горнорудное моделирова	Иние			РУТ ДІ Работа с мод
	Сейсмика Работа с сейсмическими,	данными			Дизайн Фильтрацион
	Сопровождение бурения				МатБа Анализ матер
	Дизайнер Ске Модель скважины	зажин		C _{ii}	Облач Расчёты на :
1	Коделирование поверхно	СТНЫХ СЕТЕЙ			Очере Управление
ľ	Анализ Пласт Анализ динамики пласта	a		Ś	Раздел Управление

РVT Дизайнер 25.1

Расчет энтальпии в композиционных вариантах

🔍 Для композиционных моделей добавлена возможность задавать параметры энтальпии.

Поддержан расчет энтальпии и энтропии идеального газа по корреляции Passut и Danner

По умолчанию в модели энтальпии идеального газа будет использована корреляция Aly и Lee

	Компоненты	• Фазовая	диаграмма 1 × +						1
Ce	ойства компонен	тов циенты попарн	ного взаимо, 💧 Вода Габл	пицы коэфф. сепа	арациі Параметри	ы закона Генри	Энтальпия идеальн	ного газа Свойства	тве
	Компоненты	Молярная 🗸 К	онцентрация (Σ=1 кг-мо	Ср0, кДж/кг/К	Ср1, кДж/кг/К2	Ср2, кДж/кг/КЗ	Ср3, кДж/кг/К4	Ср4, кДж/кг/К5	^ C
1	CO2	0,025		0,479108	0,000762155	-3,59397e-07	8,47431e-11	-5,77521e-15	3
2	C1	0,88		2,36485	-0,00213255	5,66211e-06	-3,72506e-09	8,60944e-13	
3	C2	0,0127273		F	8 слуцае	залани		вательск	ИХ
4	C3	0,0127273				Задани			
Гиг Оп	модели энтальпи рная температур Рассчитать выб	и идеального газа а, С: ранные свойства по	Passut и Danner ✓ Aly и Lee Passut и Danner o Kesler and Lee	компс кор	онент во реляции корр	зможно и Kesler еляции	о рассчит и Lee для Passut и	гать свои я примен Danner	ства Іения

$$+ 2C(T - T_B) + \frac{3}{2}D(T^2 - T_B^2) + \frac{4}{3}E(T^3 - T_B^3) + \frac{5}{4}F(T^4 - T_B^4) + H^* = A + BT + CT^2 + DT^3 + ET^4 + FT^5$$
$$C_p^* = B + 2CT + 3DT^2 + 4ET^3 + 5FT^4$$

- H^* энтальпия;
- *S*^{*} энтропия;
- C_{p}^{*} удельная теплоемкость;
- Т температура;
- T_B опорная температура;
- *А*, *B*, *C*, *D*, *E*, *F* коэффициенты корреляции;
- *G'* постоянная интегрирования.

- **G**′

Учет энтальпии в Grading Test

возможно использовать в качестве параметров адаптации для замеров Grading Test

Глуби

	Компоненты	• Фазова	я диаграмма 1 🗙	Gradin	g Test 1 × 🕂			
вой	іства компонентс	нты попарного вз	аи 💧 Вода пиц	цы коэфф. сепара	раметры закона	Ген Энтальпия ид	еального газа Сво	ой тве
	Компоненты	Молярна 🗸	Ср0, кДж/кг/К	Ср1, кДж/кг/К2	Ср2, кДж/кг/КЗ	Ср3, кДж/кг/К4	Ср4, кДж/кг/К5	^
1	CO2	0,025	0,479108	0,000762155	-3,59397e-07	8,47431e-11	-5,77521e-15	
2	C1	0,88	2,36485	-0,00213255	5,66211e-06	-3,72506e-09	8,60944e-13	
3	C2	0,0127273	1,14336	-0,000323727	4,24341e-06	-3,39375e-09	8,82114e-13	
4	C3	0,0127273	0,752506	0,000500843	3,40485e-06	-3,04598e-09	8,32223e-13	
5	IC4	0,00318182	0,846132	0,00458127	-2,29615e-06	0	0	
6	NC4	0,00318182	0,00854107	0,00327735	-1,10977e-06	1,76658e-10	-6,39932e-15	
7	IC5	0,00318182	0,11947	0.00500012	-2.250840-06	0	0	
8	NC5	0,00318182	-(Адаптация	олоцы	•	Использовать для ад	аптации	
9	C6	0,00318182	-0 🤊 Вернуть к б	оиблиотечным		Не использовать для	а адаптации	
Тип	модели энтальпи	и идеального газа	а Р 🗋 Копироват	ь	Ctrl+C	Сбросить параметри	ы для адаптации	
Опо	орная температур	a, C:	2 Копироват Вставить	ь с заголовком	Ctrl+Shift+C Ctrl+V			
	Рассчитать выб	ранные свойства	по Специальн	ая вставка	Ctrl+Alt+V			

📑 Адаптация

Настройки адаптации Контроль качества ✓ Grading Test 1:Grading Test Пример 2:Состав 2 Давление Плотность газа Давление насыщения Потенциальная доля С5+

Для замеров Grading Test в композиционных моделях поддержан учет энтальпии. Значения

коэффициентов изобарной удельной теплоемкости компонент корреляции Passut и Danner

		📑 Адаптация									×
		Настройки адап	тации Контрол	ль качества							
		Основные настр	ойки			Экспе	рименты	для адаптации			
		Алгоритм	Метод роя	частиц	\sim	C	остав	Эксперимен	Результаты	Bec	
		Макс. число итер	раций 10000		÷	Соста	в1 т	Grading Tes 🔻	Grading Tes • 1		
		🛛 🗹 Остановка пр	и медленной сход	димости		Соста	в1 т	Grading Tes 🔻	Grading Tes▼ 1		
		Число итераций	1000)			/				
		Необходимое улу	учшение (%) 2			T /	•				_
		 Параметры пере Адаптация аце Адаптация коэ 	еменных :нтрич. фактора, Р юфф. попарн. взаи	_{крит} и Т _{крит} по корреляци м. по корреляции	и						
		Переменная	Мин.	Начальное значение	Ma	кс.		Сохр	. Порядок		^
		Cp1 - IC5	0,0047273	0,00590912	0,0070909)5					
		Cp2 - IC4	-2,75538e-06	-2,29615e-06	-1,83692e	-06					
		Cp2 - IC5	-2,7118e-06	-2,25984e-06	-1,80787e	-06					
		Cp3 - IC4	0	0	0						~
					×	2240647				RODUGUT	0
					~			апустить адаптац	досавите	вариант	
					×						
		Потенци	альная доля С5+	, г/см3							
	0.1	0.2	0.3	0.4 0.5							
420	• • •										
	1										
440)	7										
460	X										
≥ -											
Hy 480											
È.											
500											
5200				~							
5400					•						
▲— ▲ До ● Gr	llo p rading Test	тенциальная дол	ія С5+ осле								

Корреляция Velarde-Blasingame-McCain

чёрной нефти и генерации РVТ таблиц (Варианты черной нефти – Настройки корреляций)

					×
Давление, бар					
				Газ 🗲	Вода 年
Количество значений/стадий:	20		-	0	20
Минимум:	10,1325			0	10.1325
Максимум:	101,325			0	101.325
Тип таблицы:	Лету	/чая нефти	b (PVTO)		~
Типы корреляции					
Rs		Velarde			~
Объемн. коэфф. насыщенной	і нефти	Velarde			\sim
Объемн. коэфф. недонасыще	нной нефти	Standin	g		~
Вязкость дегазированной неф	ти	Standin	g		\sim
Вязкость насыщенной летуче	й нефти	Standin	g		\sim
Вязкость недонасыщенной ле	тучей нефт	иStandin	g		~
Параметры корреляции					
Температура, С		100			
Относит. плотность нефти	+	0,9			
Относит. плотность газа	+	1			
Давление насыщения, бар	+	60			
Изотермич. коэфф. сжимаем	ости, 1/бар	0,00025			
Параметры калибровки					
			OK	Отме	на 🕐

ТНАВИГАТОР

В вариантах чёрной нефти добавлена корреляция Velarde-Blasingame-McCain для расчёта свойств

$$R_{s} = \frac{R_{sr}}{R_{sb}}, \quad p_{r} = \frac{p}{p_{b}}$$

$$R_{sr} = a_{1}p_{r}^{a_{2}} + (1 - a_{1}) \times p_{r}^{a_{3}}$$

$$a_{1} = A_{0} \times SG_{g}^{A_{1}} \times Y_{oilAPI}^{A_{2}} \times (1.8T - 459.67)^{A_{3}} \times p_{b}^{A_{3}}$$

$$a_{2} = B_{0} \times SG_{g}^{B_{1}} \times Y_{oilAPI}^{B_{3}} \times (1.8T - 459.67)^{B_{3}} \times p_{b}^{B_{3}}$$

$$a_{3} = C_{0} \times SG_{g}^{C_{1}} \times Y_{oilAPI}^{C_{2}} \times (1.8T - 459.67)^{C_{3}} \times p_{b}^{B_{3}}$$

где:

R_s – приведенное газосодержание в нефти;

R_{sr} – газосодержание при приведенном давлении;

R_{sb} – газосодержание в нефти в точке росы;

 p_r – приведенное давление;

p – текущее значение давления;

 p_b – давление насыщения;

Т – температура;

 Y_{oilAPI} – плотность нефти в градусах API;

 SG_G – плотность газа в градусах API;

A_{0,1,2,3}, B_{0,1,2,3}, C_{0,1,2,3}, a_{1,2,3} – коэффициенты корреляции.

МатБаланс

Проект <u>Д</u> изайнеры <u>М</u> оделирование <u>Н</u> астройки <u>Л</u> ицензии <u>П</u>	<u>ј</u> омощь
Параллельность: 🛛 Ядер 🔄 🗖 Использовать GPU 🕬	
ΠΗΑΒИΓΑΤΟ	Ρ
Дизайнер Геологии	Создание, ра
Геологическое моделирование	интегрирова
Дизайнер ТПИ	РVТ Ди
Горнорудное моделирование	Работа с мод
Сейсмика	Дизайн
Работа с сейсмическими данными	Фильтрацион
Геостиринг	НатБа
Сопровождение бурения	Анализ мате
Дизайнер Скважин	Облач
Модель скважины	Расчёты на
Дизайнер Сетей Моделирование поверхностных сетей	Очере, Управление
Анализ Пласта	Раздел
Анализ динамики пласта	Управление

61

Изменение таблиц потока на временных шагах

Поддержано изменение таблиц потока на временных шагах. в категорию МатБаланс (Стратегии –> Правила на шагах –> МатБаланс) - Объекты 💉 🧜 Объекты

МатБаланс	МатБаланс
Q	Q ~
ஃ Groups	> 📩 Development Strategy
> Таблицы конструкции скважин	🗸 📩 DynamicModel_Прогноз
> 槰 Таблицы добычи скважин	🝙 Глобальные правила
🔁 Таблицы добычи групп	✓ 1-Jan-2022
- Таблицы добычи регионов	А. Управление добывающими скважинами (прогноз) (Well1)
> 🕂 Таблицы добычи для резервуаров	
Входные данные для таблиц потоков	
<u>≜∕</u> Таблица1	
🏄 Таблица2	
	Подключение скважины (прогноз, IPK) Т (Well2, Well3)
	Управление нагнетательными скважинами (прогноз) (Well2) К Б. и.
$+$ \square \top \times \square	Управление добывающими скважинами (прогноз) 1 (Well3)
	💇 Экспорт таблицы потока 1 (Well1, Таблица2)
	✓ ④ 01-Jan-2024
	📑 Подключение скважины (прогноз, IPR) 1 1 (Well4, Well5)
	▲ Управление нагнетательными скважинами (прогноз) 1 (Well4)
	▲ Управление добывающими скважинами (прогноз) 1 1 (Well5)
	💇 Экспорт таблицы потока 2 (Well1, Таблица1)
	□ 01-J - 2097
	Правило Экспорт таблиц поток
	📭 🔂 💽 🕐 Потоке по скважинам от давле
П НАВИГА	ГОР і Данные таблиц потоков могут определения доли воды и газа

Правило стратегии Экспорт таблиц потока было перемещено из категории Глобальные правила

а позволяет задать таблицы зависимостей доли воды WFR и газа GFR в ния, накопленной добычи времени и т.д.

использоваться для расчета прогнозных вариантов с целью явного , вне зависимости от заданных ОФП

										-	-	-
					ī.							1
					÷							
					ŝ							
					ŝ							
					ŝ							
					ŝ							
					ŝ							
					ŝ							
					ŝ							
					ŝ							
					ŝ							
					ŝ							
					ŝ							
					ŝ							
					÷							
					ŝ							
					ŝ							
					ŝ							
				-								
Î					ŝ							
	ł		•	ł	ŝ	•		•	ł	•	•	1
					ŝ							
					į							
					1							
					ŝ							
	Ì	1	ľ	Ì	ī	1	1	ľ	Ì	ľ	ľ	1
					Ĵ							
					į							
					ŝ							
					ŝ							
					Ĵ							
	Ì	1	ľ	Ì	Ì	1	1	ľ	Ì	ľ	ľ	1
					ŝ							
					ŝ							
					ŝ							
					ŝ							
	,			,	į	,			,			ļ
	Î	Ĩ	Î	Î	Ĩ	ľ	Ĩ	Î	Î	Î	Î	1
					ŝ							
					ŝ							
					ŝ							
					ŝ							
					ŝ							
•					100							
									•			
							-					
								•				
								•				
		-	-					-	•		•	
		-					-	-				
		-					-					
		-	-				-	-		-	-	
		-	-			-	-	-				-
		-				-	-				-	
		-				-	-	-			-	-
		-	-			-	-	-			-	-
		-	-	-			-	-		-	-	
							-	-		-	-	
	-								-			
-												

Графические методы анализа для композиционных моделей МатБаланса

анализа материального баланса и анализ механизмов добычи (вкладки Граф. анализ

МатБаланса, Механизмы добычи)

МатБаланс 25.1

Для композиционных моделей материального баланса поддержаны графические методы

Поправки на гидростатику при вычислении притока

Поправки на гидростатику при вычислении притока в скважину управляются ключевым словом ADJUSTHSHEAD (Стратегии –> Создать правило –> Утилиты –> Пользовательские кл. слова)

L Объекты 💉	🖽 Таблицы 🗙	🛗 Стратеги	их	Данные по скважинам >	<	
Варианты моделей	SIM: Пользовательск	ие кл. слова				
Геометрические объекты	Дата	Операция	Описание			
	21.11.2024		Отключ	ение поправки на гидростатик	.y	
Свойства флюидов						
Данные скважины						
Q ~	🗐 Добавить ключ	евое слово			_	
> 🖶 Development Strategy	Q		Мода: 💿 🔤 Текст 🔾	⊞ 1		
V 🖶 SIM				Вр. шаг: 21.11.2024 0:00:00)	
> 🕤 Глобальные правила			Кл. слово: ADJUSTHSHEAD			
✓ ■ 21.11.2024	ADJUSTHSH	IEAD		Описание: Отключение поп	равк	
КШ Пользовательские кл. слова				VFP-DD ON /		
А* Настройки создания скважи						
	ALQ					
<u>М</u> эправление доовівающими	APPLYSCRIP	°Т	~	/	ОК	
23.11.2024	4					

МатБаланс, Симулятор 25.1

Дизайнер Сетей

Проект Дизайнеры <u>М</u> оделирование <u>Н</u> астройки <u>Л</u> ицензии <u>П</u>	омощь
Параллельность: 🛛 Ядер 🔄 🗖 Использовать GPU 🔍	
ΠΑΒИΓΑΤΟ	Ρ
Дизайнер Геологии Геологическое моделирование	Создание, ра интегрирован
Сорнорудное моделирование	РУТ Ди Работа с мод
Сейсмика	Дизайн
Работа с сейсмическими данными	Фильтрацион
Геостиринг	В МатБа
Сопровождение бурения	Анализ матер
Дизайнер Скважин	Сларования Соблачи
Модель скважины	Расчёты на л
Казайнер Сетей	Очере,
Моделирование поверхностных сетей	Управление
Анализ Пласта	Раздел
Анализ динамики пласта	Управление

Дизайнер Сетей 25.1

График максимальной скорости флюида в трубе

Добавлена возможность визуализировать график максимальной скорости движения флюида

(газа или жидкости) в трубе (Графики –> Параметры –> Максимальная скорость)

₹ ®	Схема карта х наолицы х Объекты х ветви х то т
Шаблоны Объекта Python 🌣	
Настройки иконок объектов	Uma Pipe 1
🗌 Показать резервуары МатБаланса	Tun : Toyfa
Секторные диаграммы	Mаксимальная скорость: 6.88 м/с
🗌 Сект. диагр. вкладов объектов 🌼	
🗹 Показать линии мастер-ограничения 🔅	
🗹 Показать проверку объектов	Настройки отображения
🗹 Показать подсказку с рассчитанными г 🌣	раммы Сект. диагр. вкладов объектов Линки и Трубы Подсказка с рассчитанными параметра Результат 1
🗹 Показать подписи объектов 🌼	
🗹 Показать выключенные объек	
Настройки отображения	П КПД сепарации ЭЦН
🗹 Сохр. пропорции	Концентрация соли
1 11	Максимальная скорость
	Массовая доля воды
Отображение труб Ничего 🗸	Массовая доля газа
	Массовая доля газа в стд. усл.
	U Исп. полное имя для параметров
	Шпифт Segoe UI, 9
	Цвет фона:
	Прозрачность фона:
	Экспорт в файл Импорт из
	Синхронизировать настройки
	Synchronize With: Ничего
	🗙 Закры
🔳 ΙΗΑΒΝΙΑ	AIOP

Дизайнер Сетей 25.1

Рекомбинация состава

Для интегрированных моделей добавлена возможность учитывать пользовательский Параметры – Свойства – Рекомбинировать флюид симулятора)

Константы Свойства

ТНАВИГАТОР

начальный состав флюида, заданный на скважинах, при рекомбинации состава (Настройки \rightarrow

Симулятор Х Отнош. газ/не.. ст.м3/ст.м3 - 🗛 01.03.2027 0 Молярные доли (Σ=1 кг-моль/кг-моль) 01.04.2027 67.9127 01.05.2027 91.875 WATER 0 01.06.2027 119.384 0.0165896 128.152 01.07.2027 CO2 0.00010466 137.854 01.08.2027 01.09.2027 144.065 0.403466 149.557 01.10.2027 0.0467185 155.253 01.11.2027 0.00203969 159.324 01.12.2027 0.000209655 159.34 01.01.2028 01.02.2028 160.062 0.000376268 167.54 01.03.2028 7.91976e-05 01.04.2028 171.929 5.22811e-05 01 05 2028 Корректные свойства модели Заданный флюида передается в C7FU пользовательский состав поверхностную сеть за счет рекомбинации состава 0 \bigcirc 🗙 Закрыть 01.11.2028 169.059 01.12.2028 169.404 01.01.2029 170.752 120 172.507 01.02.2029 2022 2023 2024 2025 2026 2027 2028 2029 2030 01 03 2020 173 230 01.04.2029 173.972 Дата \times 01.05.2029 174.761 Исп. корреляции черной нефти $\overline{}$ Рекомбинировать флюид Симулятора Настройки солвера Настройки интеграции Обновлять потенциал скважин для Ограничений ~ 1 >

🗙 Закрыть

0

Задание искусственного лифта ALQ

Добавлена возможность задавать величину искусственного лифта ALQ и учитывать в расчете

труб с подключенными VFP из проектов скважин (Труба –> ПКМ –> Редактировать –> ALQ)

Схема Карта 🗙	Таблицы 🗙 Объекты 🗙	Ветви ×	Трубы 🗙	Скважины	×U	Ос
Секторная диаграмма Давление(Результат 2) Объёмный дебит газа в стд. у	сл.(Результат 2)					Им Рез
Источник 1 125.03 бар 6000.00 ст.м3/сут	► Труба 1	•		Сток 1 10.00 б 8000.0	5ар 0 ст.м3/сут	Флі Тип IPR Тиг
릘 Труба 1		×				Дав
		^				FLC
						FLC
Статус	Активный					WF
Имя	Труба 1					WF
Шероховатость, м	2e-05					GFF
Внутренний диаметр, м	0.2					GFF
Теплопроводность, Вт/м/К	40					ALC
Толщина стенки, м	0.015					ALC
Глубина укладки трубы, м	0					PVT
MSL (Средний уровень моря), м	0			· · · · · · · · · · · · · · · · · · ·	2D Y	Derver X
Тип корреляции	Kopp. Beggs-Brill			eomer ×	5U ×	Резуль х
Коэфф. коррекции гидростатики	1		ИМЯ:		weii	
Коэфф. коррекции трения	1		Имя группы:			
Исп. инерционную составляющую			Объект:		Труба	
Метод укладки трубы	Kreith, exp. arc		Текущая VFP:		VFP 1	
Макс. скорость, м/с			Опорная глубина ск	важины (TVD), м:	1950	
Скорость морской воды, м/с	0		Радиус дренировани	49. 14	0	
Контроль скорости			Поверхностные усл	ORME:	U	lipoe
Настройка окружения	На суше		Лавление бар	OBMA.	1.01325	Дизайн
VFP	Проекты скважин копия: VFP 1	1	давление, оар.		101020	
ALQ, ст.м3/сут	2000		Температура, С:		10.00	
		>	Нагрев флюида	от ЭЦН		
	X	231/10/	Макс. угол отклоне	ния, град: 5		
		Закрыть	Х, 1	м: Ү,	. M:	Z, м:
			0	0	J	0
			Не для релизной в	ерсии		
			Исп. график сегментов для построения сегментов			
	ΒΝΓΔΤΟ		🗌 Тот же алгоритм	и для глубины заб	RO	
		-	_			

надводным платформам

×	
^	

Весовой коэффициент при расчете потенциалов

Для интегрированных и Только сеть моделей добавлена возможность учитывать весовой перераспределения добычи между разными скважинами (Скважина – ПКМ – Вес для оптимизации скважины)

Дизайнер Сетей 25.1

коэффициент при расчете потенциалов для группового ограничения добычи для контроля и

					^
Скважина					
Статус	Активный 🔻	Активный 🔹 🔻	Активный 🔹 🔻	Активный	*
Имя	WU1_1	WU1_2	WU1_3	WU1_4	
Режим объекта	Только Сеть 🔹 🔻	Только Сеть 🔹	Только Сеть 🔹	Только Сеть	-
Тип частоты ЭЦН б	Пост. частота ЭЦН 🛛 🔻	Пост. частот 🔻	Пост. частот 🔻	Пост. частота ЭЦН	-
Частота ЭЦН, Гц					
Коэфф. эксплуатации скважины	1	1	1	1	
Тип диаметра устья 3	Значение из проекта 🔻	Значение из 🔻	Значение из 🔻	Значение из проекта	•
Диаметр устья, м (0.075	0.075	0.075	0.075	
Тип контроля по фазе	Жидкость 🔻	Жидкость 🔹	Жидкость 🔹	Жидкость	-
Макс. скорость, м/с					
Мин. заб. давл., бар					
Макс. депрессия, бар					
Вес для оптимизации скважины	0	5	3	1	
Учитывать системные ограничения	✓				
Исп. левое пересечение VFP/IPR [~
€ ي				🗙 Закрыть	0
Настройки солвера					
Ис	сп. корреляции черной не	фти			
танты л Ре	комбинировать флюид С	имулятора			
іства Об	бновлять потенциал сквах	кин для Ограничен	ий		

Таблицы добычи в поверхностной сети

- - Редактировать Использовать данные по добыче)

В режиме Только сеть для объектов Источник с заданной кривой IPR, Скважина и Заканчивание добавлена возможность задавать таблицы добычи (Источник/Скважина/Заканчивание – ПКМ –)

Инструмент Линейка

На вкладке Карта добавлен инструмент Линейка для отображения расстояний между

точками/объектами (Вкладка Карта –> Правая панель инструментов –> Линейка)

ر 📑	Пинейка							×
Точ	ки:							
Перя	вая точка							
X: 1	553874.87	Y: 5046164.35			Z:	80.98	Joint_2	▼
Втор	рая точка							
X: 1	557728.01	Y :	5047408.78		Z:	76.43	Joint_6	▼
Расст	тояние, м:			4049.11				
Проекция расстояния, м:		4049.11						
Кратчайший маршрут по структуре, м				5149.11				
							 🗙 Закрыть	0

Молярные фазовые расходы в Python API

Добавлена возможность получать молярные фазовые расходы в Python API с помощью результатов)

Проект Настройки Файлы Редактировать Упр	равление проектами Помощь							
💾 🗔 💺 📴 🗈 🕬 🖧 🕂 🍏	о с его Открыть редакт Pytho	ор действий						
	Q	Схема Обт	екты × +					7
 2-фазные сепараторы З-фазные сепараторы Автоматич. насосы Автоматич. штуцеры Газлифты скважины 	 Молярный дебит компонента в воде Молярный дебит компонента в нефти Молярный дебит нефти для 'C1' Молярный дебит нефти для 'C2' Молярный дебит нефти для 'C3' 	Молярный де кг-моль/сут Result Joint 1 10773.2	Молярный де Моля кг-моль/сут кг-м Recult 11347.2 11452.0	ярный де моль/сут Recult 2.9 11480.3	Молярный де кг-моль/сут кг-моль/сут Result Result 11485.9 11494.3	. Молярный де кг-моль/сут Result 11495.8	Молярный де кг-моль/сут Recult 11498.7	
 Группа элементов Группы перфораций Детандеры 	Действия Python Глобальный Объект Глобальные пе	еременные						Х
 Источники Клапаны Компрессоры Линейные сепараторы Мастер-ограничения Нагнет. скв. Нагнет. скв. (16:04:26] дизайнер Сетей: МатБаланс: Абсолютная ор 16:04:26] =Применить действия Рутhоп Дизайнера (с 16:04:26] =Применить действия Руthоп Дизайнера (с 1452.907877215574 47.79596585962146 (16:04:26] Еlapsed: 00.00.00 	Скрипты:	<pre> 1 2 print("+++ 3 print(get_) 1"].result 4 print(get_) 1"].result 5 print(get_) 1"].result 6 print(get_) 1"].result 7 print("+++ </pre>	<pre>') joints()["Joint s().phase_molar_rate(joints()["Joint s().phase_molar_rate(joints()["Joint s().phase_comp_molar_ joints()["Joint s().phase_comp_molar_")</pre>	(OIL)) (GAS)) rate(OIL,·3)) rate(GAS,·3)) Q > Πα > Κπ > Κπ > Κπ > Κπ > Κπ > Κπ > Κπ > Κπ	олучение объектов пасс объекта пасс результатов пасс результатов сегмента тр обальные настройки ункции Python API	убы		
<	🕂 Добавить 🗙 Удалить 👱 Импорт	<u>↑</u> Экспорт					🗙 Закрыть	0

Дизайнер Сетей 25.1

функций phase_molar_rate() и phase_comp_molar_rate() (Редактор действий Python → Класс

Экспорт в пользовательском формате

Общие -> Экспорт объектов в пользовательском формате

Добавлен расчет Экспорт объектов в пользовательском формате, который позволяет выгрузить параметры объектов и топологию наземной сети в табличном виде (Pacчеты и Workflow ->

	Переменные модели	Перезаписать		
×2	Python библиотеки	Тип	Статус экспо	орта
T I 1	🗹 🅕 Экспорт объектов в пользовательском формате	Сток	• 🔽	
		Скважина	-	
		Источник	-	
1		Пишите или		
1				
⊡ %				
 □ № × × 				
☐ %< ×				
□ * × ↓				
□ * * *				
 □ ∞ ∞				

Задание относительной плотности

Для расчетов Редактирование Источников и Скважин поддержано задание относительной

плотности газа и нефти (Pacчеты и Workflow -> Редактирование Источников / Скважин)

ТНАВИГАТОР

	Относит. плотность неф	оти Относит. плотность газа
I	0.7	0.6
ние Скважин		
Источников		

Перезапись временных шагов

шагов, которая позволяет удалить имеющиеся временные шаги (Pacчеты и Workflow -> Редактор

временных шагов – Добавить временные шаги – Перезаписать временные шаги

ТНАВИГАТОР

Для расчета Добавить временные шаги поддержана опция перезаписи имеющихся временных

			-		×
	Добавить време	нные шаги			
	🕗 Переписать в	временные шаги			
е модели	Длина шага:	Один месяц			~
иотеки	Первая дата:	1/01/2025 12:00:00 AM		~	;
вить временные шаги	Последняя дата:	1/01/2030 12:00:00 AM		~	2
		Запустить workfl	ow X	Закрыть	?

Получение координат объектов со схемы и карты

(Расчеты и Workflow → Добавить код вручную)

Дизайнер Сетей 25.1

Добавлены функции nd_object_get_coordinates() и nd_object_get_coordinates_on_scheme(),

которые позволяют получить координаты элементов наземной сети на вкладках Схема и Карта

Объекты типа source	
Координаты на карте:	[{'type': 'source', 'name': 'Source 1', 'x': 59.973190180518145, 'y': 906.4459629025871, 'z': @
Координаты на схеме:	[{'type': 'source', 'name': 'Source 1', 'x': 794.7761194029849, 'y': 0.0}]
Объекты типа sink	
Координаты на карте:	[{'type': 'sink', 'name': 'Sink 1', 'x': 577.4738511759498, 'y': 458.93068672579267, 'z': 0.0}]
Координаты на схеме:	[{'type': 'sink', 'name': 'Sink 1', 'x': 0.0, 'y': 0.0}]
Объекты типа ріре	
Координаты на карте:	[{'type': 'pipe', 'name': 'Pipe 1', 'x': 59.973190180518145, 'y': 906.4459629025871, 'z': 0.0},
	{'type': 'pipe', 'name': 'Pipe 1', 'x': 577.4738511759498, 'y': 458.93068672579267, 'z': 0.0}]
Координаты на схеме:	[{'type': 'pipe', 'name': 'Pipe 1', 'x': 397.38805970149247, 'y': 0.0}]

Дизайнер Скважин

Проект	Дизайнеры	<u>М</u> оделирование	<u>Н</u> астройки	<u>Л</u> ицензии	<u>П</u> омощь	
Паралл	ельность: 8	ядер 💌 🛛	Использов	ать GPU 🛛	8	
		HAB	ИГА	TC	P	
6	🔊 Диз Геолог	айнер Геол ическое моделирова	ПОГИИ ание			ДИЗАЙН Создание, ра интегрирова
	ДИЗ Горнор	айнер ТПИ удное моделирован	ие		2	РVТ Ди Работа с мод
	Сей Работа	СМИКа с сейсмическими да	анными			Дизайн Фильтрацион
	Сопров	СТИРИНГ зождение бурения				МатБа Анализ матер
	ДИЗ Модели	айнер Скв	ажин			Облач Расчёты на л
	Диз Модели	айнер Сете ирование поверхное	ей стных сетей			Очере Управление
	М Анализ	лиз Пласта динамики пласта	3		~	Раздел Управление

Дизайнер Скважин 25.1

Модель сепарации газа Al Hanati

Для объекта ЭЦН реализована модель сепарации газа Al Hanati (Конструкция скважины → ЭЦН → Таблица параметров → Модель сепарации → Al Hanati)

иль скважины	×	Конструкция скважины 🛛 🗙	Pea	зультаты измерений 🛛 🗙	Теплопередач	a X	• V	FP 1	×	
	FO FO	оризонтальное отклонение, м		Парамет	rp	Зн	ачение			^
	-50	U 50		Имя		ЭЦН 1				
0				Статус		Активны	ый	-		
				Глубина (MD), м		1850				
				Макс. объёмная доля	газа на приёме	1				
200		·····		Рабочая частота, Гц		50				
				Коэфф. проскальзыван	ния	1				
400				Множитель на напор		1				
				Множитель на дебит		1				
				Поправка на вязкость						
600				Коэфф. износа насоса		0				
				Сепарация газа					Y.	
800		· · · · · · · · · · · · · · · · · · ·		Модель сепарации		Al Hana	iti	ž		R
				Площадь Ас, м2		0,266	Задано	пол	16	Ν
				Площадь Ар, м2		0,038	Al Hana	ıti		
1000				Площадь АІ, М2		0,05 🗆	•			
Σ				диаметр лопасти, м		0,1				
ජ් <u>1200</u>				к, 1/м4		0,01				_
00					данные се	акций				
			_]	Задаются г	сометр	иче	СКИ	Ie		
§ 1400		MD: 1850.00	м	Каталог	Novomet NEV38	00 @ 291	10			
), z			,	параметрь	і сепара	TOP	а и			
1600		· · · · · · · · · · · · · · · · · · ·		Количество ступенен	400			_		
			- 11	коэффици	ент к дл	ія р	асч	 	a	J
4000			- 31	Базовая скорость, об/мин	3000					
1800				давления і	а выхо	деі	ИЗ			
				сопаратора	2					
2000		▝▃ゝ▙▖▃▋		cenaparope	Удал	ить выде	ленные	секци	ии	
										<u> </u>

расхода жидкости

Системные графики

На вкладке Профиль скважины добавлен новый раздел Системные графики для визуализации

результатов расчета в целом по скважине

	_				
<u>а</u> п	роект 🗙 🛛 🏦 Си	стемные графики 🎗	× +		
Іроек	т Настройки Фаі	йлы Редактироват	ъ Помощь		
")	7. 💺 🌆 🗗 🤅	abc ጎ 🕐 💧) 📲 🕌 💽 🛛	÷	
				Х Профи	
	Начальные параме	тоы	трия 🔨 30		
	Параметр	Значение	Значение	Значени ^	<u>Ка</u> результаты профиля <u>с</u> систе
	Имя варианта	Созданный	Созданный 1	Созданный 2	
	Результат	Успешно	Успешно	Успешно	
	Флюид	Variant 1	Variant 1	Varian	Давление
	Тип вскрытия	Олнослойное	Олнослойное	Олнослойное	Забойное давление
	IPR	Не залано	Не залано	Не заля	🗌 Температура
	Тип давления	THP fran	THP fran	THP for	Забойная температура Массовый дебит волы
	Лавление	10	10	10	 Массовый дебит воды Массовый дебит нефти
					🗌 Массовый дебит газа
		5	20	55	Массовый дебит жидкости
	WER THE	MCT cru2/cru2*	WCT ct u2/ct u2 x	WCT_ct u2/ct	<
		0.6	0.6		V og
		0,0	0,0	COP cT H2/cT	
		GOR, CI.M3/CI.M3*	GOR, CLMS/CLMS *	GOR, CI.MS/CI	
	GFR	80	80	80	Имя варианта
		РОМР, ТЦ *	РОМР, ГЦ *	РОМР, ТЦ	 Дебиты
	ALQ	50	50	50	🗌 Массовый дебит воды
	РVT данные для	 Не использует. 	Не используетс	Не исполь	П Массовый дебит нефти
	Однофазная	Moody *	Moody *	Moody	✓ Массовый дебит газа ✓ Массовый дебит жидкост
	Пороговая доля	0,001	0,001	0,001	П Массовый дебит воды ст
	Угол отклонения	30	30	30	Массовый дебит нефти в
	Угол отклонения	60	60	60	Массовый дебит газа в ст Массовый себит газа в ст
	Тип карты	Стандартный 🔻	Стандартный 🔻	Стандартный	Объёмный дебит воды
	Исп. корреляции				Объёмный дебит нефти
	Вертикальная	Kopp. Hagedo 🔻	Kopp. Hagedor 🔻	Kopp. Haged	🗌 Объёмный дебит газа
	Наклонная часть	Kopp. Beggs-B 🔻	Kopp. Beggs-Brill▼	Kopp. Beggs-	Объёмный дебит жидкос
	Горизонтальная	Kopp. Beggs-B 🔻	Kopp. Beggs-Brill▼	Kopp. Beggs-	Объёмный дебит нефти в
	Трение (НКТ)	1	1	1 🗸	🗌 Объёмный дебит газа в с
	<			>	
	🖽 🔠 🗘 🕀 🏲	2			

ТНАВИГАТОР

Новые функции Python

Для получения значений IPR кривых для конкретных давлений и дебитов добавлены методы .calculate_rate_by_pressure() и .calculate_pressure_by_rate()

H	-	Work	flows	🔪 🔶 🚅 🚽 💧		✓ 1	
E.	Конст	рукция сква	жины Х	Результаты измерений	×	Профиль скважины	K
	 Расчёты Дост До	и Workflows упные расчёты Печать в лс Добавить к Комментарі Запросить / Управляющ > Проекты и \ Создать объек Обсадная коло Колонна НКТ Перфорация Вакрытие пере Пакер Нагреватель Фильтр Глубина прив Устье Клапан газлис Стадия ГРП ЭЦН Штанговый гл	Workflo V Star X2 TI 1 X2 X2 X X X X X X X X X X X X X X X X	 № № № № № № № № № № № № № № № № № № № № № № № №<!--</th--><th></th><th>Добавить код вручную Pegakrop кода 1 IPR1=get_ipr_table_b 2 3 BHP_IPR1=IPR1.calculat 4 5 Q_IPR1=IPR1.calculat 6 7 print('Заб.•давление 8 print('Дебит•для•220 Помощник Python 7 9 Функции модуля 9 Функции расчета пользователи 9 Функции дизайна газлифта 9 Функции Дизайна газлифта 9 С.calculate_pressure_by_rate (rate 9 с.calculate_pressure_by_rate (rate 9 с.calculate_pressure_by_rate (rate 9 с.calculate_pressure_by_rate (rate 9 с.calculate_pressure (pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure) 9 С.</th><th>y_nam .ate_p :e_rat :• для •)• Бар • </th>		Добавить код вручную Pegakrop кода 1 IPR1=get_ipr_table_b 2 3 BHP_IPR1=IPR1.calculat 4 5 Q_IPR1=IPR1.calculat 6 7 print('Заб.•давление 8 print('Дебит•для•220 Помощник Python 7 9 Функции модуля 9 Функции расчета пользователи 9 Функции дизайна газлифта 9 Функции Дизайна газлифта 9 С.calculate_pressure_by_rate (rate 9 с.calculate_pressure_by_rate (rate 9 с.calculate_pressure_by_rate (rate 9 с.calculate_pressure_by_rate (rate 9 с.calculate_pressure (pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure) 9 С.calculate_pressure (pressure) 9 С.calculate_pressure) 9 С.	y_nam .ate_p :e_rat :• для •)• Бар •
		азобрать пользон роверить 🛛 🛱 О	зательский код тладка Workflow				
[17:1 [17:1 [17:1 [17:1 [17:1	2:44] [Thu 2:44] [Thu 2:44] [Thu 2:44] [Thu 2:44] [Thu 2:44] [Thu	Mar 6 17: Mar 6 17: Mar 6 17: Mar 6 17: Mar 6 17: Mar 6 17:	12:44] Запус 12:44] Заб 12:44] Деб 12:44] Забер 12:44] Завер	к: Лобавить код вручную (эл л . давление для 25 тыс. м3/ден ит для 220 Бар = 25505.7991029 шено: Workflow "Workflow1_1".	ент Wor b = 223 92587 Всего	ckflow 1). GUID: 253D1C4A-359 3.6323073383316 Ногкflow 1). Всего Бремени: времени: 00.00.00. GUID: 326	00.00

	× Jones (Заб. давл.)	Объёмный расх тыс. ст.м3/сут	IPR Jones (3 бар	^
💿 😥		23,0824	236,742	
name= IPR.Jones)		23,5584	233,586	
sure_by_rate (rate=25000)		24,0249	230,429	
oy_pressure (pressure=220)		24,4826	227,273	
<pre>・тыс.·м3/день·=·'·+·str(BHP_IPR1))</pre>		24,9318	224,116	
·+· str (Q_IPR1))		25,3732	220,96	
<u> </u>		25,8069	217,803	
		26,2335	214,646	
ей точки		26,6533	211,49	
)		27,0665	208,333	
.ble>) <sim_time_t>>)</sim_time_t>		27,4736	205,177	
		27,8747	202,02	
	40	28,2701	198,864	
Запустить workflow Хакрыть	👩 іс. ст.м3/сут	28,66	195,707	¥

.00. GUID: 253D1C4A-3597-160B-A603-2EE692EAB5BB -7C32-128B-C9F7-8DA5E1B9766C.

⊤НАВИГАТОР (Pacчеты и Workflows → Утилиты → Добавить код вручную → IPR Таблица)

Новые функции Python

объектов (вкладок проекта) определенного типа

Добавлена функция get_wd_calc_object_names_by_type(), возвращающая список имен всех

⊤НАВИГАТОР (Pacчеты и Workflows → Утилиты → Добавить код вручную → Функции модуля)

Дополнительная визуализация конструкции

Добавлена визуализация измененной прискважинной зоны, зоны цементажа ОК и

теплоизоляции НКТ в окне конструкции скважины (Конструкция скважины –> Показать

термические параметры

Основные Х Геомет Х	3D × Конструкция ск × Результ	аты из × Да	знные
Конструкция	Настройки отображения		
✓ WELL	С вертикальный вид	1F U	
🗸 👖 Обсадная колонна	Сохранить исходный масштао		
Обсадная колонна 1	Ось Х: Торизонтальное отклонение 🗸		
Обсадная колонна 2	Метки: Добавить все 🗸 🗸		
🗸 📗 Колонна НКТ	Упорядочить подписи объектов		
Колонна НКТ 1	🗌 Показать глубину выбранного объекта	777	
🗸 🎚 Перфорация	Скрыть траекторию	A I	
Перфорация 1	🕗 Показать термические параметры	<u> </u>	
🔢 Закрытие перфорации	Результаты расчета	lan A	
🗸 🕕 Пакер	🗌 Показать расчет	W C	
Пакер 1	Вариант: Вариант 1 🗸		Σ
🕕 Нагреватель	Параметр:		64x,
Фильтр	Образование гидратов 🗸		1.4
<u>ttt</u> Глубина приведения	Показать сегменты		E
<u>В</u> Устье	Показать палитру	- EN P7	Z00
🕄 Клапан газлифта	🗌 Показать информацию по сегментам		ģ
Стадия ГРП	🕑 Номер сегмента	\otimes	F
🛞 эцн	🕑 Номер ветви		
📗 Штанговый глубинный			
🔘 Винтовой насос			
💮 Струйный насос		I I I I I I I I I I I I I I I I I I I 	
🛄 Заканчивание			
🔇 Манометр			
🕅 Устройство изменения			
📎 Узловая точка			
Ш Клапан		\bigcirc	

Дизайнер Скважин 25.1

Дизайн ЭЦН

• Добавлена новая вкладка Дизайн ЭЦН. Данная вкладка позволяет определить оптимальный

ЭЦН и количество ступеней для обеспечения целевого дебита

Основные данные	е 🗙 Конструкц	ия скважины 🗙 Профиль	скважины 🗙 Ди	зайн газлифта 🛛 🗙
Начальные парамет	ры	Параметры дизайна ЭЦН		Графики дизайна ЭЦН
Параметр	Значение	Параметр	Значение	
Результат	Успешно	Целевой дебит, ст.м3/сут	300	170
Флюид	🍐 Вариант 1	Глубина насоса, м	1920	
PR	🔼 IPR 1 (Жидкость)	Рассчитать насос		160
Гип давления	THP, 6ap 👻	Pullen unseen		
Давление	20	Папачетр	2000000	1 -
WFR тип	WCT, ст.м3/ст.м3 🔻		бо	150
WFR	0.2	целевая частота, гц	1	
GFR тип	GOR, ст.м3/ст.м3 ▼	Коэфф. проскальзывания	1	140
GFR	50	митель на напор	1	140
Однофазная	Moody -	Множитель на дерит	1	
Пороговая доля	0.001	Поправка на вязкость		130
гол отклонения	30	Сепарация газа		ab
гол отклонения	60	Эффективность сепарации, доля	0	e e
Гип карты режим	Стандартный 🔻	Hacoc	Novomet NHV-ER5300	120
Вертикальная част	Kopp. Hagedorn-B 🔻	Параметры работы насоса		- dan
Наклонная часть	Kopp. Beggs-Brill 🔻	Параметр	Значение	110
оризонтальная	Kopp. Beggs-Brill 🔻	Целевой дебит, ст.м3/сут	300	
Грение (НКТ)	1	Целевая частота, Гц	50	
Гидростатика (НКТ)	1	Рабочий дебит жидкости, ст.м3/о	сут 303.554	100
Исп. инерционну		Рабочий дебит нефти, ст.м3/сут	242.843	
		Рабочий дебит газа, ст.м3/сут	12142.14	90
		Рабочий дебит воды, ст.м3/сут	60.711	
		Давление на выходе, бар	20	
		Общий динамический напор. м	479.628	80
		Давление на входе, бар	105.972	
		Расход жидкости на входе, пласт	м3/сут 355.536	70
		Объемная доля газа на входе до	ng 4.66e-17	
		Hacoc	Novomet	0
		Стадии	91	
				— Кривая оттока

ТНАВИГАТОР

Левое пересечение в качестве решения

• Для расчетов Профиль скважины, Дизайн Газлифта, Системный Анализ и Узловой анализ

качестве решения левое пересечение (на вкладках: Исп. левое пересечение VFP/IPR)

Основные настройки			Начальные параметры			
PR:	IPR 1	~	Параметр	Значение		
авление на выходе , бар:	105		- Трение (НКТ)	1		
зловая точка:	Приведение	~	Гидростатика (НКТ)	1		
Поток (OIL	.), ст.м3/сут		Исп. корреляции для затрубно	0		
11			Исп. инерционную			
21			Исп. левое пересечение VFP/IPR			
+ 🎽 🗙 🗐			Установить по V	FP		
Чувствительность			·			
٩		Кривая притока:				
∨ 🛞 Общие		бар				
WFR	1	213				
GFR		203				
Кривая оттока		198				
Флюид Лавление		Пишите	или копируйте текст сюда			
ALQ						
		+ 23	×			
Графики						
Q						
> 🔽 Кривая оттока						
> 🗹 Кривая притока						

ТНАВИГАТОР

добавлена опция, позволяющая в случае наличия двух пересечений VFP с IRP, использовать в

Лицензии и лицензионный сервер

Проект <u>Д</u> изайнеры <u>М</u> оделирование <u>Н</u> астройки <u>Л</u> ицензии	<u>П</u> омощь
Параллельность: 🛛 🛛 🖉 🗖 Использовать GPU	
ΠΗΑΒИΓΑΤΟ	Ρ
Дизайнер Геологии	Создание, расчёт и анализ д
Геологическое моделирование	интегрированных проектов
Дизайнер ТПИ	РVТ Дизайнер
Горнорудное моделирование	Работа с моделью флюида
Сейсмика	Дизайнер ОФП
Работа с сейсмическими данными	Фильтрационные исследова
Беостиринг	В МатБаланс
Сопровождение бурения	Анализ материального балан
Дизайнер Скважин	Облачные Выч
Модель скважины	Расчёты на локальном и обл
Коделирование поверхностных сетей	Очередь Задач Управление очередью задач
Мализ Пласта	Разделение Рес
Анализ динамики пласта	Управление распределением

Новые типы лицензий

Гидрогеология – позволяет выполнять расчеты однофазных моделей, содержащих только воду

Сервер искусственного интеллекта – позволяет получить доступ к помощнику на основе искусственного интеллекта.

Анализ пласта – позволяет получить доступ к модулю Анализ пласта для проведения динамического анализа данных исследования скважин

ΤΗΑΒИΓΑΤΟΡ	
¥ Искусственный интеллект	Искусственный интеллект
📉 Анализ Пласта	Анализ динамики пласта
🔄 Гидрогеология	Гидрогеология
🖬 Гидрогеология	Гидрогеология

Лицензионный сервер 25.1

Шаблоны графиков статистики сервера

необходимо ввести логин, пароль и нажать Подключить Э Получить графику с сервера)

Проект Дизайнеры Моделирование Настройки	Лицензии Помощь	🗐 Графия			
Параллельность: Все ядра = 24 🗸 🗌 Использовать	Ӫ Установить лицензию	Тип диаграм			
	Остояние лицензии	۹			
	Настройка лицензионного сервера	Сво			
НАВИ	Статистика лицензионного сервера	🗹 Доб			
	Лицензионное соглашение				
	→В Руководство по установке и настройке лицензий				
🛛 🔿 Дизайнер Геологии	Руководство администратора по лицензионному серверу Приховодство администратора по лицензионному серверу				
Статистика лицензионного сервера	Х				
Инфо	рмация о сервере				
Подключено к	как Сбросить соединение				
Версия сервера: v24.4-4242-ge99c63669577					
Статистика сервера		🖻 😢			
От: 26.02.2025	∨ До: 12.03.2025 ∨	Шаблоны			
Информация сервера		Q			
Группа: #1	 Получить информацию сервера 	Шаблон			
Получить графику с сервера		тшае			
Получить гистограммы сервера	ю свободных лицензий				
Отчет об ис	пользовании лицензий				
Очередь Группа Ежедневно по пользовате.	лям Ежедневно по функциям				
группа:	очередь:				
Получить отчет использования лицензий					
Стат	истика с сервера	+			

ГНАВИГАТОР

В интерфейсе лицензионного сервера добавлены шаблоны графиков использования лицензий

(Главное окно тНавигатор – Лицензии – Статистика лицензионного сервера – далее в окне

Сервер Управления

Проект	Дизайнеры	<u>М</u> оделирование	<u>Н</u> астройки	<u>Л</u> ицензии	<u>П</u> омощь	
Паралл	ельность: 8	ядер 💌	Использов	ать GPU	30	
		HAB	ИГА	ΔTC	P	
	Диз Геолого	айнер Геол ическое моделирова	ПОГИИ ание			ДИЗАЙН Создание, ра интегрирован
	ДИЗ Горнор	айнер ТПИ удное моделирован	ие		2	РVТ Ди Работа с моди
	Сей Работа	СМИКА с сейсмическими д	анными			Дизайн Фильтрацион
	Сопров	СТИРИНГ зождение бурения				МатБал Анализ матер
	А ДИЗ Модели	айнер Скв	ажин		<u>C</u> a	Облачн Расчёты на л
1	Ж Диз Модели	айнер Сето ирование поверхноо	ЕЙ стных сетей			Очеред Управление о
	М Аналия Аналия	лиз Пласта динамики пласта	3		<	Раздел Управление р

Сервер Управления 25.1

Запуск Сервера Управления вместе с кластерным диспетчером

- - (возможность добавлена в дистрибутив диспетчера)

#Подключение к диспетчеру на кластере opts = tnav.ConnectionOptions ()

opts.api_server_url = 'pbs-dev:5555' opts.queue = "workq" opts.console_version = "v25.1-xxx-yyyyyyyy"

opts.login = 'login' opts.plain_password = 'password'

conn = tnav.Connection(connection_options=opts)

Сервер Управления 25.1

Добавлена возможность запускать Сервер Управления вместе с кластерным диспетчером

Кластер

Открытие проекта адаптации

Проект адаптации можно открыть с помощью функции .open_project() класса Connection

project = conn open_project path = 'PUNQ3/PUNQ_S3N.hmp') lh_res = project.run_py_code(code ="""return hm_launch_latin_hypercube (n_variants=10, Запуск base_variant_name="", variables_filter="", эксперимента named_variables_config="", experiment_name="", Латинский random seed=10, гиперкуб use_time_steps_freezer=False, frozen time steps count=0)""") proxy model name = "proxy" proxy set name = "proxy set" neural proxy model = project.run py code(code = f""" return hm_create_neural_proxy_model (model_name="{proxy_model_name}", groupset_name="{proxy_set_name}", variables_filter="", keys_table=[{{"param_name" : "TOT_O_PROD", "object_name" : "FIELD_GROUP::FIELD", "date" : datetime (year=1983, month=1, day=1, hour=0, minute=0, second=0, microsecond=0)}}], training alg="rprop", activation function for hidden layers="sigmoid Symmetric", activation function for output layer="linear", number of neurons=20, max epochs=100, learning rate=0.5, regularization=False, regularization coef=0.001, only_positive_vals=True, need_crossval=True, number_of_folds=2, use_single_nn=False)""")

🔨 What-If сценарий

×

3500

Очередь задач

Проект Дизайнеры <u>М</u> оделирование <u>Н</u> астройки <u>Л</u> ице	ензии <u>П</u> омощь
Параллельность: 🛛 8 ядер 🔄 🗖 Использовать G	PU 800
ΠΗΑΒΗΓΑΤ	OP
Дизайнер Геологии Геологическое моделирование	Создание, ра интегрирован
Дизайнер ТПИ Горнорудное моделирование	РVТ Ди Работа с мод
Сейсмика Работа с сейсмическими данными	Дизайн Фильтрацион
Геостиринг Сопровождение бурения	Нализ матер
Дизайнер Скважин Модель скважины	Облачи Расчёты на л
Дизайнер Сетей Моделирование поверхностных сетей	Очеред Управление о
Анализ Пласта Анализ динамики пласта	Раздел Управление

Очередь задач и Доступ к Кластеру 25.1

Настройки расчёта у нескольких задач

• Добавлена возможность редактировать настройки расчёта у нескольких задач одновременно (Диспетчер задач/Доступ к кластеру → Выделить расчеты → ПКМ → Редактировать настройки расчёта)

Проен	ст Инструменты Настройки Помощи	5				
	☞ 프 - 프 - #모					
#	Задача	Статус		Прогресс	Затра	Осталось врем
	tch/Demo_simple/DEMO_SIMPLEDATA	Рассчитана		100%	00:0	
	/Demo_simple/DEMO_SIMPLE_ALL.DATA	Рассчитана		100%	00:0	
	/Demo_simple/DEMO_SIMPLE_MIX.DATA	Рассчитана		100%	00:0	
	o_simple/DEMO_SIMPLE_MIX_MD.DATA	Рассчитана		100%	00:0	
	O_SIMPLE_RPTGRAPHD_RPTMAPD.DATA	Рассчитана		100%	00:0	
	O_SIMPLE_RPTGRAPHL_RPTMAPL.DATA	Рассчитана		100%	00:0	
	O_SIMPLE_RPTGRAPHT_RPTMAPT.DATA mo_simple/DEMO_SIMPLE_RPTRST.DATA	Рассчита 🌣	Редак	тировать настр	ойки рас	чёта
	o_simple/DEMO_SIMPLE_RPTRSTD.DATA	Рассчита 🕐	Перес	читать задачи		
	o_simple/DEMO_SIMPLE_RPTRSTL.DATA o_simple/DEMO_SIMPLE_RPTRSTT.DATA	Рассчита Х	Удали	ть из очереди		
	O_SIMPLE_TNAVRESULTS — копия.DATA	Рассчита 🗢	Посм	отреть результа	ты	
	ple/DEMO_SIMPLE_TNAVRESULTS.DATA	Рассчита 📈	Посм	отреть графики	I.	
	AVRESULTS_CONN_RES_FORECAST.DATA	Ошибка	Посм	отреть результа	ты в Диз	айнере Моделей
<		(i)	Посм	отреть лог		
		4	Очист	ить <mark>рассчитан</mark> н	ные резул	пьтаты
			Перег	проверка статус	a	
			Копир	овать имя мод	ели	
			Копир	овать путь к ло	кальной	модели
			Копир	овать выделен	ные стро	ки
		P				

Очередь задач и Доступ к Кластеру 25.1

		🗐 Опции расчета				
иени ^	+	Имя кластера:		localhost		
	+	Основные настройки	Расширенные настройки	Краткое описани	ие конфигурации	
		Число ядер:		罕	Конфигурация ядер	расчета
		Тип физической модели:		Чёрной нефти		
		Переопределить настр	оойки исп. GPU 📃 Использ	овать GPU	Число G	iPU на узел
		Задать количество пот	оков вручную:	12		
		Отложить расчёт до:		03.03.2025 17:50:	51	
		Результаты:		Bcë		
Del	B	Частота записи свойств:		RPTMAPD		
	ĺ.	Частота записи графиков:		RPTMAPD/RPTGF	APHD .	
	 	Сохранить бинарные фай	лы UNRST/UNSMRY: 🗌 Граф	фики	Свойства	
		Coxpaнить RSM файл		Сохранить О	FM файл	
й	ľ				ОК	Отмена
Ctrl+I	D -					

Х × .

Документация и локализация

Проект	Дизайнеры	<u>М</u> оделирование	<u>Н</u> астройки	<u>Л</u> ицензии	<u>П</u> омощь	
Паралл	ельность: 8	ядер 💌	Использов	зать GPU 🛛	8 68	
		HAB	ИГА	٩ΤC	P	
	🗊 Диз Геолог	айнер Геол ическое моделирова	ПОГИИ ание			ДИЗАЙН Создание, ра интегрирован
	ДИЗ Горнор	айнер ТПИ рудное моделирован	ие			РVТ Ди Работа с мод
	Сей Работа	СМИКА с сейсмическими д	анными			Дизайн Фильтрацион
	Сопро	СТИРИНГ зождение бурения				МатБал Анализ матер
	ДИЗ Модел	айнер Скв ь скважины	ажин			Облачи Расчёты на л
	🖗 Диз Модел	айнер Сето ирование поверхное	РЙ стных сетей			Очере Управление о
	М Анализ	лиз Пласта з динамики пласта	3		K	Раздел Управление ј

Добавление операций Workflow через Эксперт

виде pacчета workflow (API-функция \rightarrow ПКМ \rightarrow Добавить функцию в workflow проекта)

41.2.1 Унивораали над инторнолднид	📮 Расчёты и workflow						
41.5.1. универсальная интерполяция	Workflow1 ∨ C ⁺ C [*] C [*] C [*]					нтерполяция	
Лицензии:) SEIS)) GD)) MIN)	~		Переменные модели	1	2D-Карта: 🕥		
		×2	Python библиотеки		Невязка		
Функция API: map_2d_interpolate()		1	🖂 🧱 Универсальн	ая интерполяция	🗌 Набор точе	к невязки: Source	_Points
Этот расчет позволяет созлать но 🏧 Добавить функцию в workflow проекта			3		🗌 Невязка по	скважинам: 123 Residua	al
маркорам наборам тоном рориронтом Следующая страница Вправо рориомом					🖉 Переписат	ь набор точек	
маркерам, наобрам точек, торизонтам, Предыдущая страница Влево					Исходные данн	ые	
задаются следующие параметры:		T			Атрибуты си	важин	
• Результат.					Атрибуты на	абора точек	
 2D-Карта. Имя результирующей 2D-карты. 					Атрибуты м	аркера	
• Невязка.		*			▶ 2D-Карты —		
		×			• Сейсмичеся	ие горизонты	
 Набор точек невязки. Невязка по скважинам. Название набора точек, для 		G					
которого будут созданы атрибуты со значениями невязок. Для каждого					Многоуголь	ники	
расчета создается набор точек невязок с атрибутами, содержащими значения		▶ [¥]			• Вертикальн	ые разломы	
невязок. Если для интерполяции используются несколько объектов, для						-	
каждой точки объекта создается точка невязки. Эти значения могут быть		×			🗌 Карта тренд	a: 🕦	
визуализированы в 2D		GOI			 Настройки 21) сетки	
bisyuminipobulibi b 2D.		@x			🗗 Бокс	по Х:	по Ү:
		Ο			Начало, м	1 0	0
41.2.1 Viupopoarti uag utropuorgi ug		Q			Длина, м	1000	1000
41.5.1. эниверсальная интерполяция 1255			льзовательский кол		Отступ м	In	110
	Г۴	Проверить	🚔 Отдадка workflow	Banycruth workflow Ha Kaacte	ne 🗇 Sanver workflow s	изолированной среде	
		проверина		- Sanycrina worknow ha Macre	PC B Sanyek Worknow B	изолированной среде	

Документация 25.1

Для каждого из расчетов описанных в модуле Эксперт добавлены названия соответствующих АРІ-функций. Каждая из приведенных функций может быть добавлена в открытый проект в

		×	l
			I
	•		I
			I
	•		I
	•		I
			I
			I
			I
			I
		.	I
			I
		-	I
		-	I
			I
			I
			I
	▼		I
			I
			I
	1		
кры	ть	0	

Дизайнер Моделей: MD2.6 Объединение моделей и анализ добычи по пластам Рассматривается процесс объединения сеток несвязанных друг с другом продуктивных пластов, построение динамической модели, а также анализ данных добычи флюида в целом по месторождению и в отдельности по каждому из пластов. В процессе объединения сеток между ними добавляется неактивный слой блоков, также происходит объединение соответствующих свойств. Оценка добычи флюида из разных пластов осуществляется с помощью трассеров.

Новые учебные курсы

- Дизайнер Сетей:
- ND1.10 Моделирование объектов первичной подготовки нефти
- В курсе рассматривается:
- Создание модели сети подготовки нефти на основе двухступенчатой сепарации с помощью расчета workflow.
- Импорт модели флюида для проекта сети с помощью расчета workflow.
- Ручная и автоматизированная оптимизация сети с помощью Редактора событий и скрипта Python.
- Подбор оборудования для оптимальной работы сети с помощью скрипта Python. ТНАВИГАТОР

	1	
лелей	× +	Æ
<u></u>		
asLowP 1.01 ба 38.79 C 13.58 π 13.58 π 13.261 0.00 κr/ ank 1.01 6:	р ыс. кг/сут । кг/сут /сут	
38.79 (6455.7 2105.8 7452.3 01	с 8 кг/сут 5 тыс. кг/сут 4 кг/сут	
1.01 б 38.79 0.00 кг 2097.5 7452.3	ар С -/сут 4 тыс. кг/сут 4 кг/сут	
2.00 ба 27.02 С).00 кг/).00 кг/ 12.23 ті	р ; сут сут ыс. кг/сут	
	ОіІ:Массовый тыс. кг/сут	
2024	2072.90	
2024	2000.2	
2024	2097.1	
2024	2097.54	
2024	2096.86	
2024	2095.52	
2024	2093.8	
2024	2091.77	
		?
		-

Сервер Управления:

- API1.4 Создание проекта в Дизайнере Скважин при помощи Сервера Управления API В данном курсе рассматривается создание проекта скважины с использованием инструментов Сервера
- Управления. Проект создания скважины включает:
- Импорт траектории и конструкции скважины, указание РVТ-свойств флюида, расчёт VFP кривых, задание IPR таблицы
- Загрузка результатов фактических замеров. Адаптация VFP кривых на замеры
- Экспорт элементов конструкции скважины в формате .xlsx (MS Office Excel) и VFP кривых в **формате** *.vfp

Документация 25.1

МатБаланс:

МВА1.5 Конвертация гидродинамической модели в модель МатБаланса Рассмотрены возможности автоматической конвертации гидродинамической модели в модель МатБаланса. Приведены теоретические основы, включая осреднение свойств ГДМ и создание основных элементов модели МатБаланса. Представлены основные шаги и используемые настройки для выполнения конвертации. Предлагаются практические задания: создание модели МатБаланса на основе имеющихся или пользовательских отчетных регионов.

Документация 25.1

Командная работа:

СОММОN1.13 Новые опции командной работы Механизм командной работы: сотрудники могут вносить свои изменения в проект. Все изменения приходят в проект администратора. Администратор проекта контролирует и обрабатывает входящие изменения (одобряет или отклоняет). Одобренные изменения переносятся в проект администратора, из которого все пользователи могут перенести их в свои локальные проекты.

Основные выводы

- Добавлен новый модуль ИИ Ассистент, представляющий собой помощник на основе искусственного интеллекта.
- анализа данных.
- 🔍 Для термических моделей поддержана опция моделирования молекулярной диффузии.
- Симуляторе трещин
- Добавлен новые объекты в Дизайнере Сетей
- Добавлена новая вкладка Дизайн ЭЦН для подбора оптимального ЭЦН и вкладка для визуализации карты режимов течения

анализа и многое другое...

Для композиционных моделей материального баланса поддержаны графические методы

Поддержана возможность моделирования термических эффектов при проведении ГРП в

• Добавлен новый модуль – Анализ Пласта, предназначенный для проведения динамического

Спасибо за внимание!

Полный список изменений приведен в Release Notes

	Документация
	😌 Дизайнер Геологии и Моделей
	🎽 Дизайнер ТПИ
Ì۶	🛜 Сейсмика
0	늘 Геостиринг
tat	🖄 РVT Дизайнер
	📐 Дизайнер ОФП
	🛓 Дизайнер Скважин
E.	👹 Дизайнер Сетей
	🗧 МатБаланс
	API Сервер Управления
	🚀 Расчёт
	Результаты Расчёта
	₩ Симулятор ГРП
	🎘 Адаптация и Оптимизация
	🗐 Очередь Задач

Версия 25.1 тНавигатор 1.

Ключевыми изменениями версии 25.1 являются:

- исполняемого workflow.
- выполнять анализ крир

 Добавлен новый модуль – ИИ Ассистент. Данный модуль представляет собой помощник на основе искусственного интеллекта, который принимает естественно-языковые запросы и выдает ответы в текстовом виде и в виде

 Добавлен новый модуль – Анализ Пласта, предназначения динамического анализа данных. В

